Kit Revision Date: 21/07/2021 # 834B BLACK FLAME RETARDANT EPOXY KIT # **MG Chemicals Multipart Product Kit** This product is a kit made up of multiple parts. Each part is an independently packaged chemical component and has independent hazard assessments. # **Kit Content** | Part | Product Name | Product Use | |------|--------------|-----------------------------------| | Α | 834B-A | Resin for use with epoxy hardener | | В | 834B-B | Hardener for use with epoxy resin | Safety Data Sheets for each part listed above follow this cover sheet. # **Transportation Instruction** Before offering this product kit for transport, read Section 14 for <u>all</u> parts listed above. # 834B-A Black Flame Retardant Epoxy MG Chemicals UK Limited Version No:A-2.00 Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758 Issue Date: 21/07/2021 Revision Date: 21/07/2021 L.REACH.GB.EN # SECTION 1 Identification of the substance / mixture and of the company / undertaking # 1.1. Product Identifier | Product name 834B-A | | | | | | |-------------------------------|--|--|--|--|--| | Synonyms | SDS Code: 834B-Part A; 834B-A, 834B-375ML, 834B-2.7L, 834B-10.8L, 834B-60L UFI:U9E0-A0MP-Q00T-X1SE | | | | | | Other means of identification | Black Flame Retardant Epoxy | | | | | # 1.2. Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Resin for use with epoxy hardener | | | | |--------------------------|-----------------------------------|--|--|--| | Uses advised against | Not Applicable | | | | ## 1.3. Details of the supplier of the safety data sheet | Registered company name MG Chemicals UK Limited | | MG Chemicals (Head office) | | |---|-----------------------|--|--| | Address Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom | | 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada | | | Telephone | +(44) 1663 362888 | +(1) 800-201-8822 | | | Fax Not Available | | +(1) 800-708-9888 | | | Website Not Available | | www.mgchemicals.com | | | Email | sales@mgchemicals.com | Info@mgchemicals.com | | # 1.4. Emergency telephone number | Association / Organisation | Verisk 3E (Access code: 335388) | | | | | |-----------------------------------|---------------------------------|--|--|--|--| | Emergency telephone numbers | +(44) 20 35147487 | | | | | | Other emergency telephone numbers | +(0) 800 680 0425 | | | | | #### **SECTION 2 Hazards identification** # 2.1. Classification of the substance or mixture | Classified according to | |------------------------------| | GB-CLP Regulation, UK SI | | 2019/720 and UK SI 2020/1567 | | [1] | H411 - Chronic Aquatic Hazard Category 2, H315 - Skin Corrosion/Irritation Category 2, H319 - Eye Irritation Category 2, H361 - Reproductive Toxicity Category 2, H317 - Skin Sensitizer Category 1 Legend: 1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 # 2.2. Label elements Hazard pictogram(s) Signal word Warning #### Hazard statement(s) | H411 | Toxic to aquatic life with long lasting effects. | | | | |------|--|--|--|--| | H315 | Causes skin irritation. | | | | | H319 | Causes serious eye irritation. | | | | | H361 | Suspected of damaging fertility or the unborn child. | | | | | H317 | May cause an allergic skin reaction. | | | | #### Not Applicable ## Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | | | | | |---|--|--|--|--|--| | P280 Wear protective gloves, protective clothing, eye protection and face protection. | | | | | | | P261 Avoid breathing mist/vapours/spray. | | | | | | | P273 Avoid release to the environment. | | | | | | | P264 Wash all exposed external body areas thoroughly after handling. | | | | | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | | | | ## Precautionary statement(s) Response | P308+P313 | IF exposed or concerned: Get medical advice/ attention. | | | | | |--|--|--|--|--|--| | P302+P352 | IF ON SKIN: Wash with plenty of water and soap. | | | | | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | | | | P362+P364 Take off contaminated clothing and wash it before reuse. | | | | | | | P391 | Collect spillage. | | | | | #### Precautionary statement(s) Storage | P405 | Store locked up | |------|-----------------| |------|-----------------| # Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. #### 2.3. Other hazards Inhalation may produce health damage*. Cumulative effects may result following exposure*. Limited evidence of a carcinogenic effect*. Possible respiratory sensitizer*. REACh - Art.57-59: The mixture does not contain Substances of Very High Concern (SVHC) at the SDS print date. # **SECTION 3 Composition / information on ingredients** #### 3.1.Substances See 'Composition on ingredients' in Section 3.2 # 3.2.Mixtures | 1.CAS No
2.EC No
3.Index No
4.REACH No | %[weight] | Name | Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 | Nanoform Particle
Characteristics | |--|-----------|--------------------------------------|---|--------------------------------------| | 1.1675-54-3
2.216-823-5
3.603-073-00-2 603-074-00-8
4.Not Available | 31 | bisphenol A diglycidyl
ether | Skin Corrosion/Irritation Category 2, Eye Irritation Category 2, Skin Sensitizer Category 1; H315, H319, H317 [2] | Not Available | | 1.21645-51-2
2.244-492-7
3.Not Available
4.Not Available | 21 | alumina hydrate | EUH210 ^[1] | Not Available | | 1.68333-79-9
2.269-789-9
3.Not Available
4.Not Available | 19 | ammonium
polyphosphate | Chronic Aquatic Hazard Category 4; H413 [1] | Not Available | | 1.1344-28-1.
2.215-691-6
3.Not Available
4.Not Available | 16 | aluminium oxide | EUH210 ^[1] | Not Available | | 1.17557-23-2
2.241-536-7
3.603-094-00-7
4.Not Available | 6 | neopentyl glycol
diglycidyl ether | Skin Corrosion/Irritation Category 2, Skin Sensitizer Category 1; H315, H317 ^[2] | Not Available | | 1.12767-90-7
2.235-804-2
3.Not Available
4.Not Available | 5 | zinc borate | Eye Irritation Category 2, Reproductive Toxicity Category 1B, Chronic Aquatic Hazard Category 1; H319, H360, H410 [1] | Not Available | | 1.CAS No
2.EC No
3.Index No
4.REACH No | %[weight] | Name | Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 | Nanoform Particle
Characteristics | |---|-----------|--------------|---|--------------------------------------| | 1.1333-86-4
2.215-609-9 435-640-3 422-130-0
3.Not Available
4.Not Available | 0.4 | carbon black | Carcinogenicity Category 2; H351 ^[1] | Not Available | | Legend: 1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567; 3. Classification drawn from C&L * EU IOELVs available; [e] Substance identified as having endocrine disrupting properties | | | | 7; 3. Classification drawn | #### **SECTION 4 First aid measures** #### 4.1. Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Nash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. |
 Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | # 4.2 Most important symptoms and effects, both acute and delayed See Section 11 #### 4.3. Indication of any immediate medical attention and special treatment needed for phosphate salts intoxication: - All treatments should be based on observed signs and symptoms of distress in the patient. Consideration should be given to the possibility that overexposure to materials other than this product may have occurred. - Ingestion of large quantities of phosphate salts (over 1.0 grams for an adult) may cause an osmotic catharsis resulting in diarrhoea and probable abdominal cramps. Larger doses such as 4-8 grams will almost certainly cause these effects in everyone. In healthy individuals most of the ingested salt will be excreted in the faeces with the diarrhoea and, thus, not cause any systemic toxicity. Doses greater than 10 grams hypothetically may cause systemic toxicity. - ▶ Treatment should take into consideration both anionic and cation portion of the molecule. - All phosphate salts, except calcium salts, have a hypothetical risk of hypocalcaemia, so calcium levels should be monitored. #### Treat symptomatically. - Manifestation of aluminium toxicity include hypercalcaemia, anaemia, Vitamin D refractory osteodystrophy and a progressive encephalopathy (mixed dysarthria-apraxia of speech, asterixis, tremulousness, myoclonus, dementia, focal seizures). Bone pain, pathological fractures and proximal myopathy can occur. - Symptoms usually develop insidiously over months to years (in chronic renal failure patients) unless dietary aluminium loads are excessive. - Serum aluminium levels above 60 ug/ml indicate increased absorption. Potential toxicity occurs above 100 ug/ml and clinical symptoms are present when levels exceed 200 ug/ml. - Deferoxamine has been used to treat dialysis encephalopathy and osteomalacia. CaNa2EDTA is less effective in chelating aluminium. [Ellenhorn and Barceloux: Medical Toxicology] Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce 'metal fume fever' in workers from an acute or long term exposure. - Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever) - Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months. - Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects. - The general approach to treatment is recognition of the disease, supportive care and prevention of exposure. - Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema [Ellenhorn and Barceloux: Medical Toxicology] # **SECTION 5 Firefighting measures** #### 5.1. Extinguishing media - ► Foam. - Dry chemical powder. - BCF (where regulations permit). - ► Carbon dioxide. - Water spray or fog Large fires only. #### 5.2. Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### 5.3. Advice for firefighters # Fire Fighting - Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - ▶ Prevent, by any means available, spillage from entering drains or water course. - Use water delivered as a fine spray to control fire and cool adjacent area. - Avoid spraying water onto liquid pools. - ▶ DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. # Combustible. - Slight fire hazard when exposed to heat or flame. - ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. - On combustion, may emit toxic fumes of carbon monoxide (CO). - May emit acrid smoke. - Mists containing combustible materials may be explosive. #### Fire/Explosion Hazard Combustion products include: carbon dioxide (CO2) aldehydes nitrogen oxides (NOx) phosphorus oxides (POx) metal oxides other pyrolysis products typical of burning organic material. When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles #### **SECTION 6 Accidental release measures** #### 6.1. Personal precautions, protective equipment and emergency procedures See section 8 #### 6.2. Environmental precautions See section 12 #### 6.3. Methods and material for containment and cleaning up | Min | a. Caill | |-----|----------| Environmental hazard - contain spillage. - In the event of a spill of a reactive diluent, the focus is on containing the spill to prevent contamination of soil and surface or ground water. - If irritating vapors are present, an approved air-purifying respirator with organic vapor canister is recommended for cleaning up spills and leaks. - For small spills, reactive diluents should be absorbed with sand. - Minor Spills - ► Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. - Control personal contact with the substance, by using protective equipment. - ▶ Contain and absorb spill with sand, earth, inert material or vermiculite - ▶ Wipe up. - Place in a suitable, labelled container for waste disposal. Environmental hazard - contain spillage. Industrial spills or releases of reactive diluents are infrequent and generally contained. If a large spill does occur, the material should be captured, collected, and reprocessed or disposed of according to applicable governmental requirements. An approved air-purifying respirator with organic-vapor canister is recommended for emergency work #### Moderate hazard. - ▶ Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. # **Major Spills** - Prevent, by any means available, spillage from entering drains or water course. - No smoking, naked lights or ignition sources. - Increase ventilation. - Stop leak if safe to do so. - Contain spill with sand, earth or vermiculite. - Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite. - Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains. - If contamination of drains or waterways occurs, advise emergency services. #### 6.4. Reference to other sections Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** # 7.1. Precautions for safe handling Safe handling ▶ Avoid all personal contact, including inhalation. | | Wear protective clothing when risk of exposure occurs. | |-------------------------------|---| | | Use in a well-ventilated area. | | | Prevent concentration in hollows and sumps. | | | DO NOT enter confined spaces until atmosphere has been checked. | | | Avoid smoking, naked lights or ignition sources. | | | Avoid contact with incompatible materials. | | | ► When handling, DO NOT eat, drink or smoke. | | | Keep containers securely sealed when not in use. | | | Avoid physical damage to containers. | | | Always wash hands with soap and water after handling. | | | Work clothes should be laundered separately. | | | ▶ Use good occupational work practice. | | | Dbserve manufacturer's storage and handling recommendations contained within this SDS. | | | Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. | | | DO NOT allow clothing wet with material to stay in contact with skin | | Fire and explosion protection | See section 5 | | Other information | Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. | ## 7.2. Conditions for safe storage, including any incompatibilities | .z. Conditions for sale storag | e, including any incompatibilities | |--------------------------------
--| | | ► Metal can or drum | | Suitable container | ▶ Packaging as recommended by manufacturer. | | | Check all containers are clearly labelled and free from leaks. | | | For aluminas (aluminium oxide): Incompatible with hot chlorinated rubber. In the presence of chlorine trifluoride may react violently and ignite. | | | -May initiate explosive polymerisation of olefin oxides including ethylene oxide. | | | -Produces exothermic reaction above 200°C with halocarbons and an exothermic reaction at ambient temperatures with halocarbons in the presence of other metals. | | | -Produces exothermic reaction with oxygen diffuoride. | | | -May form explosive mixture with oxygen difluoride. | | | -Forms explosive mixtures with sodium nitrate. | | | -Reacts vigorously with vinyl acetate. | | | Aluminium oxide is an amphoteric substance, meaning it can react with both acids and bases, such as hydrofluoric acid and sodium hydroxide, | | | acting as an acid with a base and a base with an acid, neutralising the other and producing a salt. | | | Epoxides: | | | ▶ are highly reactive with acids, bases, and oxidising and reducing agents. | | | ▶ react, possibly violently, with anhydrous metal chlorides, ammonia, amines and group 1 metals. | | Storage incompatibility | ▶ may polymerise in the presence of peroxides or heat - polymerisation may be violent | | | • may react, possibly violently, with water in the presence of acids and other catalysts. | | | Glycidyl ethers: | | | may form unstable peroxides on storage in air ,light, sunlight, UV light or other ionising radiation, trace metals - inhibitor should be
maintained at adequate levels | | | ▶ may polymerise in contact with heat, organic and inorganic free radical producing initiators | | | may polymerise with evolution of heat in contact with oxidisers, strong acids, bases and amines | | | ▶ react violently with strong oxidisers, permanganates, peroxides, acyl halides, alkalis, ammonium persulfate, bromine dioxide | | | * attack some forms of plastics, coatings, and rubber | | | Reactive diluents are stable under recommended storage conditions, but can decompose at elevated temperatures. In some cases, | | | decomposition can cause pressure build-up in closed systems. | | | Avoid cross contamination between the two liquid parts of product (kit). | | | If two part products are mixed or allowed to mix in proportions other than manufacturer's recommendation, polymerisation with gelation and | | | evolution of heat (exotherm) may occur. | | | This excess heat may generate toxic vapour | | | Avoid reaction with amines, mercaptans, strong acids and oxidising agents | # 7.3. Specific end use(s) See section 1.2 # SECTION 8 Exposure controls / personal protection # 8.1. Control parameters | 6.1. Control parameters | | | | | |------------------------------|---|---|--|--| | Ingredient | DNELs
Exposure Pattern Worker | PNECs
Compartment | | | | bisphenol A diglycidyl ether | Dermal 0.75 mg/kg bw/day (Systemic, Chronic)
Inhalation 4.93 mg/m³ (Systemic, Chronic)
Dermal 89.3 µg/kg bw/day (Systemic, Chronic) *
Inhalation 0.87 mg/m³ (Systemic, Chronic) *
Oral 0.5 mg/kg bw/day (Systemic, Chronic) * | 0.006 mg/L (Water (Fresh)) 0.001 mg/L (Water - Intermittent release) 0.018 mg/L (Water (Marine)) 0.341 mg/kg sediment dw (Sediment (Fresh Water)) 0.034 mg/kg sediment dw (Sediment (Marine)) 0.065 mg/kg soil dw (Soil) 10 mg/L (STP) 11 mg/kg food (Oral) | | | | alumina hydrate | Inhalation 10.76 mg/m³ (Systemic, Chronic) Inhalation 10.76 mg/m³ (Local, Chronic) Oral 4.74 mg/kg bw/day (Systemic, Chronic) * | Not Available | | | | Ingredient | DNELs
Exposure Pattern Worker | PNECs
Compartment | |------------------------|---|--| | ammonium polyphosphate | Inhalation 18.06 mg/m³ (Systemic, Chronic) Inhalation 4.45 mg/m³ (Systemic, Chronic) * Oral 1.28 mg/kg bw/day (Systemic, Chronic) * | Not Available | | aluminium oxide | Dermal 0.84 mg/kg bw/day (Systemic, Chronic) Inhalation 3 mg/m³ (Systemic, Chronic) Inhalation 3 mg/m³ (Local, Chronic) Dermal 0.3 mg/kg bw/day (Systemic, Chronic) * Inhalation 0.75 mg/m³ (Systemic, Chronic) * Oral 1.32 mg/kg bw/day (Systemic, Chronic) * Inhalation 0.75 mg/m³ (Local, Chronic) * | 74.9 µg/L (Water (Fresh))
20 mg/L (STP) | | zinc borate | Dermal 1 585 mg/kg bw/day (Systemic, Chronic)
Inhalation 22.4 mg/m³ (Systemic, Chronic)
Dermal 1 205 mg/kg bw/day (Systemic, Chronic) *
Inhalation 8.3 mg/m³ (Systemic, Chronic) *
Oral 2.4 mg/kg bw/day (Systemic, Chronic) * | 2.9 mg/L (Water (Fresh)) 2.9 mg/L (Water - Intermittent release) 13.7 mg/L (Water (Marine)) 117.8 mg/kg sediment dw (Sediment (Fresh Water)) 56.5 mg/kg sediment dw (Sediment (Marine)) 5.7 mg/kg soil dw (Soil) 10 mg/L (STP) | | carbon black | Inhalation 1 mg/m³ (Systemic, Chronic)
Inhalation 0.5 mg/m³ (Local, Chronic)
Inhalation 0.06 mg/m³ (Systemic, Chronic) * | 1 mg/L (Water (Fresh)) 0.1 mg/L (Water - Intermittent release) 10 mg/L (Water (Marine)) | ^{*} Values for General Population # Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |-------------------------------------|-----------------|-----------------------------------|-----------|---------------|---------------|---------------| | UK Workplace Exposure Limits (WELs) | aluminium oxide | Aluminium oxides: respirable dust | 4 mg/m3 | Not Available | Not Available | Not Available | | UK Workplace Exposure Limits (WELs) | aluminium oxide | Aluminium oxides: inhalable dust | 10 mg/m3 | Not Available | Not Available | Not Available | | UK Workplace Exposure Limits (WELs) | carbon black | Carbon black | 3.5 mg/m3 | 7 mg/m3 | Not Available | Not Available | # **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |------------------------------|-----------|-----------|-------------| | bisphenol A diglycidyl ether | 39 mg/m3 | 430 mg/m3 | 2,600 mg/m3 | | bisphenol A diglycidyl ether | 90 mg/m3 | 990 mg/m3 | 5,900 mg/m3 | | alumina hydrate | 8.7 mg/m3 | 73 mg/m3 | 440 mg/m3 | | aluminium oxide | 15 mg/m3 | 170 mg/m3 | 990 mg/m3 | | carbon black | 9 mg/m3 | 99 mg/m3 | 590 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |-----------------------------------|---------------|---------------| | bisphenol A diglycidyl ether | Not Available | Not Available | | alumina hydrate | Not Available | Not Available | | ammonium polyphosphate | Not Available | Not Available | | aluminium oxide | Not Available | Not Available | | neopentyl glycol diglycidyl ether | Not Available | Not Available | | zinc borate | Not Available | Not Available | | carbon black | 1,750 mg/m3 | Not Available | # Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | | |-----------------------------------|--|----------------------------------|--| | bisphenol A diglycidyl ether | E | ≤ 0.1 ppm | | | neopentyl glycol diglycidyl ether | E | ≤ 0.1 ppm | | | zinc borate | E | ≤ 0.01 mg/m³ | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | # MATERIAL DATA For aluminium oxide and pyrophoric grades of aluminium: Twenty seven year experience with aluminium oxide dust (particle size 96% 1,2 um) without adverse effects either systemically or on the lung, and at a calculated concentration equivalent to 2 mg/m3 over an 8-hour shift has lead to the current recommendation of the TLV-TWA. The limit should also apply to aluminium pyro powders whose toxicity is reportedly greater than aluminium dusts and should be protective against lung changes. #### For aluminium oxide: The experimental and clinical data indicate that aluminium oxide acts as an 'inert' material when inhaled and seems to have little effect on the lungs nor does it produce significant organic disease or toxic effects when exposures are kept under reasonable control. [Documentation of the Threshold Limit Values], ACGIH, Sixth Edition For epichlorohydrin Odour Threshold Value: 0.08 ppm NOTE: Detector tubes for epichlorohydrin, measuring in excess of 5 ppm, are commercially available. Exposure at or below the
recommended TLV-TWA is thought to minimise the potential for adverse respiratory, liver, kidney effects. Epichlorohydrin has been implicated as a human skin sensitiser, hence individuals who are hypersusceptible or otherwise unusually responsive to certain chemicals may NOT be adequately protected from adverse health effects. Odour Safety Factor (OSF) OSF=0.54 (EPICHLOROHYDRIN) #### 8.2. Exposure controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant. # 8.2.1. Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ## 8.2.2. Personal protection #### Eve and face protection - ► Safety glasses with side shields. - Chemical goggles - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] # Skin protection See Hand protection below #### NOTE: - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. #### Hands/feet protection The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact. - chemical resistance of glove material, - glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time > 480 min - · Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than $0.35\ mm$, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. When handling liquid-grade epoxy resins wear chemically protective gloves , boots and aprons. The performance, based on breakthrough times ,of: - Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent - · Butyl Rubber ranges from excellent to good - · Nitrile Butyl Rubber (NBR) from excellent to fair. - Neoprene from excellent to fair - Polyvinyl (PVC) from excellent to poor As defined in ASTM F-739-96 - · Excellent breakthrough time > 480 min - Good breakthrough time > 20 min - Fair breakthrough time < 20 min - Poor glove material degradation Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively) - DO NOT use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin). - DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use. Replacement time should be considered when
selecting the most appropriate glove. It may be more effective to select a glove with lower chemical resistance but which is replaced frequently than to select a more resistant glove which is reused many times # Body protection See Other protection below # Other protection - Overalls. - P.V.C apron. - Barrier cream. - Skin cleansing cream. - ► Eye wash unit. # Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | | |------------------------------------|----------------------|----------------------|------------------------|--| | up to 10 x ES | A-AUS | - | A-PAPR-AUS / Class 1 | | | up to 50 x ES | - | A-AUS / Class 1 | - | | | up to 100 x ES | - | A-2 | A-PAPR-2 ^ | | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used #### 8.2.3. Environmental exposure controls See section 12 # **SECTION 9 Physical and chemical properties** | Appearance | Black | | | | | |--|------------------------|---|---------------|--|--| | Physical state | Liquid | Relative density (Water = 1) | 1.69 | | | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | 16300 | | | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Available | | | | Flash point (°C) | Not Available | Taste | Not Available | | | | Evaporation rate | Not Available BuAC = 1 | Explosive properties | Not Available | | | | Flammability | Not Available | Oxidising properties | Not Available | | | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | | | Solubility in water | Immiscible | pH as a solution (%) | Not Available | | | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | | | | Nanoform Solubility | Not Available | Nanoform Particle
Characteristics | Not Available | | | | Particle Size | Not Available | | | | | #### 9.2. Other information Not Available # **SECTION 10 Stability and reactivity** | | - | |--|--| | 10.1.Reactivity | See section 7.2 | | 10.2. Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | 10.3. Possibility of hazardous reactions | See section 7.2 | | 10.4. Conditions to avoid | See section 7.2 | | 10.5. Incompatible materials | See section 7.2 | | 10.6. Hazardous decomposition products | See section 5.3 | ## **SECTION 11 Toxicological information** #### 11.1. Information on toxicological effects The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting In animal testing, exposure to aerosols of some reactive diluents (notably o-cresol glycidyl ether, CAS RN: 2210-79-9) has been reported to affect the adrenal gland, central nervous system, kidney, liver, ovaries, spleen, testes, thymus, and respiratory tract. Inhalation hazard is increased at higher temperatures. Inhaled Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in 'metal fume fever'. Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure. Ingestion Accidental ingestion of the material may be damaging to the health of the individual. Reactive diluents exhibit a range of ingestion hazards. Small amounts swallowed incidental to normal handling operations are not likely to cause injury. However, swallowing larger amounts may cause injury. Male rats exposed to a single oral dose of bisphenol A diglycidyl ether (BADGE) at 750, 1000, and 2000 mg/kg/day showed a significantly increase in the number of immature and maturing sperm on the testis. There were no significant differences with respect to sperm head count, sperm motility, and sperm abnormality in the BADGE treatment groups Inorganic polyphosphates are used extensively in domestic and industrial products. Rats fed 10% sodium trimetaphosphate for a month exhibited transient tubular necrosis; those given 10% sodium metaphosphate exhibited growth retardation; 10% sodium hexametaphosphate produced pale and swollen kidneys Salts of this type appear to be hydrolysed in the bowel to produce phosphoric acid and systemic acidosis may result following absorption. Higher molecular weight species, absorbed from the alimentary canal, may produce hypocalcaemic tetany due to binding of ionised calcium by the absorbed phosphate. This is reported in at least one case following ingestion of sodium tripolyphosphate. Acute toxic responses to aluminium are confined to the more soluble forms. The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Contact with aluminas (aluminium oxides) may produce a form of irritant dermatitis accompanied by pruritus. Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Bisphenol A diglycidyl ether (BADGE) may produce contact dermatitis characterised by erythema and oedema, with weeping followed by crusting and scaling. A liquid resin with a molecular weight of 350 produced severe skin irritation in rabbits when applied daily for 4 hours over 20 days. Following the initial contact there may be a discrete erythematous lesion, confined to the point of contact, which may persist for 48 hours to 10 days; the erythema may give way to a papular, vesicular rash with scaling. In animals uncured resin produces moderate ante-mortem depression, loss of body weight and diarrhoea. Local irritation, inflammation and death resulting from respiratory system depression are recorded. Higher molecular weight resins generally produce lower toxicity. Skin contact with reactive diluents may cause slight to moderate irritation with local redness. Repeated or prolonged skin contact may cause Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The material produces mild skin irritation; evidence exists, or practical experience predicts, that the material either - produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or - produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a
form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Eve Eye contact with reactive diluents may cause slight to severe irritation with the possibility of chemical burns or moderate to severe corneal injury. Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive. Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive. Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. All glycidyl ethers show genotoxic potential due their alkylating properties. Those glycidyl ethers that have been investigated in long term studies exhibit more or less marked carcinogenic potential. Alkylating agents may damage the stem cell which acts as the precursor to components of the blood. Loss of the stem cell may result in pancytopenia (a reduction in the number of red and white blood cells and platelets) with a latency period corresponding to the lifetime of the individual blood cells. Granulocytopenia (a reduction in granular leukocytes) develops within days and thrombocytopenia (a disorder involving platelets), within 1-2 weeks, whilst loss of erythrocytes (red blood cells) need months to become clinically manifest. Aplastic anaemia develops due to complete destruction of the stem cells. Reported adverse effects in laboratory animals include sensitization, and skin and eye irritation, as well as mutagenic and tumorigenic activity.. Testicular abnormalities (including testicular atrophy with decreased spermatogenic activity) following exposure to glycidyl ethers have been reported. Haemopoietic abnormalities following exposure to glycidyl ethers, including alteration of the leukocyte count, atrophy of lymphoid tissue, and bone marrow cytotoxicity have also been reported. These abnormalities were usually observed along with pneumonia and/or toxemia, and therefore may be secondary effects. However, especially in light of the generalized reduction in leukocytes and the atrophy of lymphoid tissues, the observed haemopoietic abnormalities may have been predisposing factors to pneumonia. While none of the individual research reports are conclusive with respect to the ability of glycidyl ethers to produce permanent changes to the testes or haemopoietic system in laboratory animals, the pattern of displayed effects is reason for concern Glycidyl ethers have been shown to cause allergic contact dermatitis in humans. Glycidyl ethers generally cause skin sensitization in experimental animals. Necrosis of the mucous membranes of the nasal cavities was induced in mice exposed to allyl glycidyl ether. A study of workers with mixed exposures was inconclusive with regard to the effects of specific glycidyl ethers. Phenyl glycidyl ether, but not n-butyl glycidyl ether, induced morphological transformation in mammalian cells in vitro. n-Butyl glycidyl ether induced micronuclei in mice in vivo following intraperitoneal but not oral administration. Phenyl glycidyl ether did not induce micronuclei or chromosomal aberrations in vivo or chromosomal aberrations in animal cells in vitro. Alkyl C12 or C14 glycidyl ether did not induce DNA damage in cultured human cells or mutation in cultured animal cells. Allyl glycidyl ether induced mutation in Drosophila. The glycidyl ethers were generally mutagenic to bacteria. Chronic exposure to aluminas (aluminium oxides) of particle size 1.2 microns did not produce significant systemic or respiratory system effects in workers. Epidemiologic surveys have indicated an excess of nonmalignant respiratory disease in workers exposed to aluminum oxide during abrasives production. Very fine Al2O3 powder was not fibrogenic in rats, guinea pigs, or hamsters when inhaled for 6 to 12 months and sacrificed at periods up to 12 months following the last exposure. When hydrated aluminas were injected intratracheally, they produced dense and numerous nodules of advanced fibrosis in rats, a reticulin network with occasional collagen fibres in mice and guinea pigs, and only a slight reticulin network in rabbits. Shaver's disease, a rapidly # Skin Contact #### Chronic progressive and often fatal interstitial fibrosis of the lungs, is associated with a process involving the fusion of bauxite (aluminium oxide) with iron, coke and silica at 2000 deg. C. The weight of evidence suggests that catalytically active alumina and the large surface area aluminas can induce lung fibrosis(aluminosis) in experimental animals, but only when given by the intra-tracheal route. The pertinence of such experiments in relation to workplace exposure is doubtful especially since it has been demonstrated that the most reactive of the aluminas (i.e. the chi and gamma forms), when given by inhalation, are non-fibrogenic in experimental animals. However rats exposed by inhalation to refractory aluminium fibre showed mild fibrosis and possibly carcinogenic effects indicating that fibrous aluminas might exhibit different toxicology to non-fibrous forms. Aluminium oxide fibres administered by the intrapleural route produce clear evidence of carcinogenicity. Saffil fibre an artificially produced form alumina fibre used as refractories, consists of over 95% alumina, 3-4 % silica. Animal tests for fibrogenic, carcinogenic potential and oral toxicity have included in-vitro, intraperitoneal injection, intrapleural injection, inhalation, and feeding. The fibre has generally been inactive in animal studies. Also studies of Saffil dust clouds show very low respirable fraction. There is general agreement that particle size determines that the degree of pathogenicity (the ability of a micro-organism to produce infectious disease) of elementary aluminium, or its oxides or hydroxides when they occur as dusts, fumes or vapours. Only those particles small enough to enter the alveolii (sub 5 um) are able to produce pathogenic effects in the lungs. Occupational exposure to aluminium compounds may produce asthma, chronic obstructive lung disease and pulmonary fibrosis. Long-term overexposure may produce dyspnoea, cough, pneumothorax, variable sputum production and nodular interstitial fibrosis; death has been reported. Chronic interstitial pneumonia with severe cavitations in the right upper lung and small cavities in the remaining lung tissue, have been observed in gross pathology. Shaver's Disease may result from occupational exposure to fumes or dusts; this may produce respiratory distress and fibrosis with large blebs. Animal studies produce no indication that aluminium or its compounds are carcinogenic. Because aluminium competes with calcium for absorption, increased amounts of dietary aluminium may contribute to the reduced skeletal mineralisation (osteopenia) observed in preterm infants and infants with growth retardation. In very high doses, aluminium can cause neurotoxicity, and is associated with altered function of the blood-brain barrier. A small percentage of people are allergic to aluminium and experience contact dermatitis, digestive disorders, vomiting or other symptoms upon contact or ingestion of products containing aluminium, such as deodorants or antacids. In those without allergies, aluminium is not as toxic as heavy metals, but there is evidence of
some toxicity if it is consumed in excessive amounts. Although the use of aluminium cookware has not been shown to lead to aluminium toxicity in general, excessive consumption of antacids containing aluminium compounds and excessive use of aluminium-containing antiperspirants provide more significant exposure levels. Studies have shown that consumption of acidic foods or liquids with aluminium significantly increases aluminium absorption, and maltol has been shown to increase the accumulation of aluminium in nervous and osseus tissue. Furthermore, aluminium increases oestrogen-related gene expression in human breast cancer cells cultured in the laboratory These salts' estrogen-like effects have led to their classification as a metalloestrogen. Some researchers have expressed concerns that the aluminium in antiperspirants may increase the risk of breast cancer After absorption, aluminium distributes to all tissues in animals and humans and accumulates in some, in particular bone. The main carrier of the aluminium ion in plasma is the iron binding protein, transferrin. Aluminium can enter the brain and reach the placenta and foetus. Aluminium may persist for a very long time in various organs and tissues before it is excreted in the urine. Although retention times for aluminium appear to be longer in humans than in rodents, there is little information allowing extrapolation from rodents to the humans. At high levels of exposure, some aluminium compounds may produce DNA damage in vitro and in vivo via indirect mechanisms. The database on carcinogenicity of aluminium compounds is limited. No indication of any carcinogenic potential was obtained in mice given aluminium potassium sulphate at high levels in the diet. Aluminium has shown neurotoxicity in patients undergoing dialysis and thereby chronically exposed parenterally to high concentrations of aluminium. It has been suggested that aluminium is implicated in the aetiology of Alzheimer's disease and associated with other neurodegenerative diseases in humans. However, these hypotheses remain controversial. Several compounds containing aluminium have the potential to produce neurotoxicity (mice, rats) and to affect the male reproductive system (dogs). In addition, after maternal exposure they have shown embryotoxicity (mice) and have affected the developing nervous system in the offspring (mice, rats). The available studies have a number of limitations and do not allow any dose-response relationships to be established. The combined evidence from several studies in mice, rats and dogs that used dietary administration of aluminium compounds produce lowest-observed-adverse-effect levels (LOAELs) for effects on neurotoxicity, testes, embryotoxicity, and the developing nervous system of 52, 75, 100, and 50 mg aluminium/kg bw/day, respectively. Similarly, the lowest no-observed-adverse-effect levels (NOAELs) for effects on these endpoints were reported at 30, 27, 100, and for effects on the developing nervous system, between 10 and 42 mg aluminium/kg bw per day, respectively. Controversy exists over whether aluminium is the cause of degenerative brain disease (Alzheimer's disease or AD). Several epidemiological studies show a possible correlation between the incidence of AD and high levels of aluminium in drinking water. A study in Toronto, for example, found a 2.6 times increased risk in people residing for at least 10 years in communities where drinking water contained more than 0.15 mg/l aluminium compared with communities where the aluminium level was lower than 0.1 mg/l. A neurochemical model has been suggested linking aluminium exposure to brain disease. Aluminium concentrates in brain regions, notably the hippocampus, cerebral cortex and amygdala where it preferentially binds to large pyramid-shaped cells - it does not bind to a substantial degree to the smaller interneurons. Aluminium displaces magnesium in key metabolic reactions in brain cells and also interferes with calcium metabolism and inhibits phosphoinositide metabolism. Phosphoinositide normally controls calcium ion levels at critical concentrations. Under the microscope the brain of AD sufferers show thickened fibrils (neurofibrillary tangles - NFT) and plaques consisting of amyloid protein deposited in the matrix between brain cells. Tangles result from alteration of 'tau' a brain cytoskeletal protein. AD tau is distinguished from normal tau because it is hyperphosphorylated. Aluminium hyperphosphorylates tau in vitro. When AD tau is injected into rat brain NFT-like aggregates form but soon degrade. Aluminium stabilises these aggregates rendering them resistant to protease degradation. Plaque formation is also enhanced by aluminium which induces the accumulation of amyloid precursor protein in the thread-like extensions of nerve cells (axons and dendrites). In addition aluminium has been shown to depress the activity of most neuro-transmitters similarly depressed in AD (acetylcholine, norepinephrine, glutamate and GABA). Aluminium enters the brain in measurable quantities, even when trace levels are contained in a glass of tap water. Other sources of bioavailable aluminium include baking powder, antacids and aluminium products used for general food preparation and storage (over 12 months, aluminium levels in soft drink packed in aluminium cans rose from 0.05 to 0.9 mg/l). [Walton, J and Bryson-Taylor, D. - Chemistry in Australia, August 1995] Bisphenol A diglycidyl ethers (BADGEs) produce sensitisation dermatitis characterised by a papular, vesicular eczema with considerable itching of the back of the hand, the forearm and face and neck. This lesion may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. This dermatitis may persist for longer periods following each exposure but is unlikely to become more intense. Lesions may develop a brownish colour and scaling occurs frequently. Lower molecular weight species produce sensitisation more readily. In mice technical grades of bisphenol A diglycidyl ether produced epidermal tumours and a small increase in the incidence kidney tumours in males and of lymphoreticular/ haematopoietic tumours in females. Subcutaneous injection produced a small number of fibrosarcomas in rats. BADGE is listed as an IARC Group 3 carcinogen, meaning it is 'not classifiable as to its carcinogenicity to humans'. Concern has been raised over this possible carcinogenicity because BADGE is used in epoxy resins in the lining of some tin cans for foodstuffs, and unreacted BADGE may end up in the contents of those cans. In chronic animal studies inorganic polyphosphates produced growth inhibition, increased kidney weights (with calcium deposition and desquamation), bone decalcification, parathyroid hypertrophy and hyperplasia, inorganic phosphaturia, hepatic focal necrosis and alterations to the size of muscle fibres Inorganic phosphates are not genotoxic in bacterial systems nor are they carcinogenic in rats. No reproductive or developmental toxicity was seen in studies using rats exposed to sodium hexametaphosphate or sodium trimetaphosphate. For some reactive diluents, prolonged or repeated skin contact may result in absorption of potentially harmful amounts or allergic skin reactions Exposure to some reactive diluents (notably neopentylglycol diglycidyl ether, CAS RN:17557-23-2) has caused cancer in some animal testing. # 834B-A Black Flame Retardant | TOXICITY | IRRITATION | |---------------|---------------| | Not Available | Not Available | | | TOXICITY | IRRITATION | | | | |------------------------------|---|--------------------------------|---|--|--| | | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye (rabbit): 2 mg/24h - | SEVERE | | | | bisphenol A diglycidyl ether | Oral(Rat) LD50; >2000 mg/kg ^[1] | Eye: adverse effect obse | erved (irritating) ^[1] | | | | | | Skin (rabbit): 500 mg - m | nild | | | | | | Skin: adverse effect obse | erved (irritating) ^[1] | | | | | TOXICITY | IRRITATION | | | | | alumina hydrate | Inhalation(Rat) LC50; >2.3 mg/l4h ^[1] | Eye: no adverse effect obse | erved (not irritating) ^[1] | | | | | Oral(Rat) LD50; >2000 mg/kg ^[1] | Skin: no adverse effect obse | erved (not irritating) ^[1] | | | | | TOXICITY | | IRRITATION | | | | | Dermal (rabbit) LD50: >3160 mg/kg ^[2] | | Not Available | | | | ammonium polyphosphate | Inhalation(Rat) LC50; >4.85 mg/l4h ^[1] | | | | | | | Oral(Rat) LD50; >=300<=2000 mg/kg ^[1] | | | | | | | Grain (rai) 2500, 7=000 (=2000 mg/rg) | | | | | | aluminium oxide | TOXICITY | IRRITATION | | | | | | Inhalation(Rat) LC50; >2.3 mg/l4h ^[1] Eye: no adverse effect obser | | erved (not irritating) ^[1] | | | | | Oral(Rat) LD50; >2000 mg/kg ^[1] Skin: no adverse effect observed (not irritating) ^[1] | | | | | | | TOXICITY | IRRITATION | | | | | neopentyl glycol diglycidyl | Dermal (rabbit) LD50: 2150 mg/kg ^[2] | Eye: adverse effect ob | served (irritating) ^[1] | | | | ether | Oral(Rat) LD50; 4500 mg/kg ^[2] | Skin (human): Sensitis | ser [Shell] | | | | | Skin: adverse effect obs | | oserved (irritating) ^[1] | | | | | TOXICITY | IRRITATION | | | | | | Dermal (rabbit) LD50: >2000 mg/kg ^[1] | | Eye (rabbit): mild * | | | | zinc borate | Inhalation(Rat) LC50; 4.95 mg/l4h ^[1] | | adverse effect observed (irritating) ^[1] | | | | | Oral(Rat) LD50; >5000 mg/kg ^[1] | • | verse effect observed (not irritating) ^[1] | | | | | | Skin: non-irritant * | 5 , | | | | | TOXICITY | IRRITATION | | | | | carbon black | dermal (rat) LD50: >2000 mg/kg ^[1] Eye: no adverse effect of | | ved (not irritating) ^[1] | | | | | Oral(Rat) LD50; >8000 mg/kg ^[1] | Skin: no adverse effect observ | | | | | | | | | | | # For aluminium compounds: Aluminium present in food and drinking water is poorly absorbed through the gastrointestinal tract. The
bioavailability of aluminium is dependent on the form in which it is ingested and the presence of dietary constituents with which the metal cation can complex Ligands in food can have a marked effect on absorption of aluminium, as they can either enhance uptake by forming absorbable (usually water soluble) complexes (e.g., with carboxylic acids such as citric and lactic), or reduce it by forming insoluble compounds (e.g., with phosphate or dissolved silicate). Considering the available human and animal data it is likely that the oral absorption of aluminium can vary 10-fold based on chemical form alone. Although bioavailability appears to generally parallel water solubility, insufficient data are available to directly extrapolate from solubility in water to bioavailability. #### 834B-A Black Flame Retardant Epoxy For oral intake from food, the European Food Safety Authority (EFSA) has derived a tolerable weekly intake (TWI) of 1 milligram (mg) of aluminium per kilogram of bodyweight. In its health assessment, the EFSA states a medium bioavailability of 0.1 % for all aluminium compounds which are ingested with food. This corresponds to a systemically available tolerable daily dose of 0.143 microgrammes (µg) per kilogramme (kg) of body weight. This means that for an adult weighing 60 kg, a systemically available dose of 8.6 µg per day is considered safe. Based on a neuro-developmental toxicity study of aluminium citrate administered via drinking water to rats, the Joint FAO/WHO Expert Committee on Food Additives (JECFA) established a Provisional Tolerable Weekly Intake (PTWI) of 2 mg/kg bw (expressed as aluminium) for all aluminium compounds in food, including food additives. The Committee on Toxicity of chemicals in food, consumer products and the environment (COT) considers that the derivation of this PTWI was sound and that it should be used in assessing potential risks from dietary exposure to aluminium. The Federal Institute for Risk Assessment (BfR) of Germany has assessed the estimated aluminium absorption from antiperspirants. For this purpose, the data, derived from experimental studies, on dermal absorption of aluminium from antiperspirants for healthy and damaged skin was used as a basis. At about 10.5 µg, the calculated systemic intake values for healthy skin are above the 8.6 µg per day that are considered safe for an adult weighing 60 kg. If aluminium -containing antiperspirants are used on a daily basis, the tolerable weekly intake determined by the EFSA is therefore exceeded. The values for damaged skin, for example injuries from shaving, are many times higher. This means that in case of daily use of an aluminium-containing antiperspirant alone, the TWI may be completely exhausted. In addition, further aluminium absorption sources such as food, cooking utensils and other cosmetic products must be taken into account Systemic toxicity after repeated exposure No studies were located regarding dermal effects in animals following intermediate or chronic-duration dermal exposure to various forms of #### aluminium When orally administered to rats, aluminium compounds (including aluminium nitrate, aluminium sulfate and potassium aluminium sulfate) have produced various effects, including decreased gain in body weight and mild histopathological changes in the spleen, kidney and liver of rats (104 mg Al/kg bw/day) and dogs (88-93 mg Al/kg bw/day) during subchronic oral exposure. Effects on nerve cells, testes, bone and stomach have been reported at higher doses. Severity of effects increased with dose. The main toxic effects of aluminium that have been observed in experimental animals are neurotoxicity and nephrotoxicity. Neurotoxicity has also been described in patients dialysed with water containing high concentrations of aluminium, but epidemiological data on possible adverse effects in humans at lower exposures are inconsistent Reproductive and developmental toxicity: Studies of reproductive toxicity in male mice (intraperitoneal or subcutaneous administration of aluminium nitrate or chloride) and rabbits (administration of aluminium chloride by gavage) have demonstrated the ability of aluminium to cause testicular toxicity, decreased sperm quality in mice and rabbits and reduced fertility in mice. No reproductive toxicity was seen in females given aluminium nitrate by gavage or dissolved in drinking water. Multi-generation reproductive studies in which aluminium sulfate and aluminium ammonium sulfate were administered to rats in drinking water, showed no evidence of reproductive toxicity High doses of aluminium compounds given by gavage have induced signs of embryotoxicity in mice and rats in particular, reduced fetal body weight at pirth and delayed ossification. Developmental toxicity studies in which aluminium chloride was administered by gavage to pregnant rats showed evidence of foetotoxicity, but it was unclear whether the findings were secondary to maternal toxicity. A twelve-month neuro-development with aluminium citrate administered via the drinking water to Sprague-Dawley rats, was conducted according to Good Laboratory Practice (GLP). Aluminium citrate was selected for the study since it is the most soluble and bioavailable aluminium salt. Pregnant rats were exposed to aluminium citrate from gestational day 6 through lactation, and then the offspring were exposed post-weaning until postnatal day 364. An extensive functional observational battery of tests was performed at various times. Evidence of aluminium toxicity was demonstrated in the high (300 mg/kg bw/day of aluminium) and to a lesser extent, the mid-dose groups (100 mg/kg bw/day of aluminium). In the high-dose group, the main effect was renal damage, resulting in high mortality in the male offspring. No major neurological pathology or neurobehavioural effects were observed, other than in the neuromuscular subdomain (reduced grip strength and increased foot splay). Thus, the lowest observed adverse effect level (LOAEL) was 100 mg/kg bw/day and the no observed adverse effect level (NOAEL) was 30 mg/kg bw/day. Bioavailability of aluminium citrate and aluminium hydroxide was much lower than that of aluminium citrate This study was used by JECFA as key study to derive the PTWI. #### Genotoxicity Aluminium compounds were non-mutagenic in bacterial and mammalian cell systems, but some produced DNA damage and effects on chromosome integrity and segregation in vitro. Clastogenic effects were also observed in vivo when aluminium sulfate was administered at high doses by gavage or by the intraperitoneal route. Several indirect mechanisms have been proposed to explain the variety of genotoxic effects elicited by aluminium salts in experimental systems. Cross-linking of DNA with chromosomal proteins, interaction with microtubule assembly and mitotic spindle functioning, induction of oxidative damage, damage of lysosomal membranes with liberation of DNAase, have been suggested to explain the induction of structural chromosomal aberrations, sister chromatid exchanges, chromosome loss and formation of oxidized bases in experimental systems. The EFSA Panel noted that these indirect mechanisms of genotoxicity, occurring at relatively high levels of exposure, are unlikely to be of relevance for humans exposed to aluminium via the diet. Aluminium compounds do not cause gene mutations in either bacteria or mammalian cells. Exposure to aluminium compounds does result in both structural and numerical chromosome aberrations both in in-vitro and in-vivo mutagenicity tests. DNA damage is probably the result of indirect mechanisms. The DNA damage was observed only at high exposure levels. #### Carcinogenicity. The available epidemiological studies provide limited evidence that certain exposures in the aluminium production industry are carcinogenic to humans, giving rise to cancer of the lung and bladder. However, the aluminium exposure was confounded by exposure to other agents including polycyclic aromatic hydrocarbons, aromatic amines, nitro compounds and asbestos. There is no evidence of increased cancer risk in non-occupationally exposed persons. #### Neurodegenerative diseases. Following the observation that high levels of aluminium in dialysis fluid could cause a form of dementia in dialysis patients, a number of studies were carried out to determine if aluminium could cause dementia or cognitive impairment as a consequence of environmental exposure over long periods. Aluminium was identified, along with other elements, in the amyloid plaques that are one of the diagnostic lesions in the brain for Alzheimer disease, a common form of senile and pre-senile dementia. some of the epidemiology studies suggest the possibility of an association of Alzheimer disease with aluminium in water, but other studies do not confirm this association. All studies lack information on ingestion of aluminium from food and how concentrations of aluminium in food affect the association between aluminium in water and Alzheimer disease." There are suggestions that persons with some genetic variants may absorb more aluminium than others, but there is a need for more analytical research to determine whether aluminium from various sources has a significant causal association with Alzheimer disease and other neurodegenerative diseases. Aluminium is a neurotoxicant in experimental animals. However, most of the animal studies performed have several limitations and therefore cannot be used for quantitative risk assessment. Contact sensitivity: It has been suggested that the body burden of aluminium may be linked to different iseases. Macrophagic myofasciitis and chronic fatigue syndrome can be caused by aluminium-containing adjuvants in vaccines. Macrophagic myofasciitis (MMF) has been described as a disease in adults presenting with ascending myalgia and severe fatigue following exposure to aluminium hydroxide-containing vaccines The corresponding histological findings include
aluminium-containing macrophages infiltrating muscle tissue at the injection site. The hypothesis is that the long-lasting granuloma triggers the development of the systemic syndrome. Aluminium acts not only as an adjuvant, stimulating the immune system either to fend off infections or to tolerate antigens, it also acts as a sensitisers causing contact allergy and allergic contact dermatitis. In general, metal allergies are very common and aluminium is considered to be a weak allergen. A metal must be ionised to be able to act as a contact allergen, then it has to undergo haptenisation to be immunogenic and to initiate an immune response. Once inside the skin, the metal ions must bind to proteins to become immunologically reactive. The most important routes of exposure and sensitisation to aluminium are through aluminium-containing vaccines. One Swedish study showed a statistically significant association between contact allergy to aluminium and persistent tiching nodules in children treated with allergen-specific immunotherapy (ASIT) Nodules were overrepresented in patients with contact allergy to aluminium Other routes of sensitisation reported in the literature are the prolonged use of aluminium-containing antiperspirants, topical medication, and tattooing of the skin with aluminium-containing pigments. Most of the patients experienced eczematous reactions whereas tattooing caused granulomas. Even though aluminium is used extensively in industry, only a low number of cases of occupational skin sensitisation to aluminium have been reported Systemic allergic contact dermatitis in the form of flare-up reactions after re-exposure to aluminium has been documented: pruritic nodules at present and previous injection sites, eczema at the site of vaccination as well as at typically atopic localisations after vaccination with aluminium-containing vaccines and/or patch testing with aluminium, and also after use of aluminium-containing toothpaste #### BISPHENOL A DIGLYCIDYL ETHER Bisphenol A exhibits hormone-like properties that raise concern about its suitability in consumer products and food containers. Bisphenol A is thought to be an endocrine disruptor which can mimic oestrogen and may lead to negative health effects. More specifically, bisphenol A closely mimics the structure and function of the hormone oestradiol with the ability to bind to and activate the same oestrogen receptor as the natural hormone. The presence of the p-hydroxy group on the benzene rings is though to be responsible for the oestradiol mimicry. . Early developmental stages appear to be the period of greatest sensitivity to its effects and some studies have linked prenatal exposure to later physical and neurological difficulties. Regulatory bodies have determined safety levels for humans, but those safety levels are being questioned or are under review. A 2009 study on Chinese workers in bisphenol A factories found that workers were four times more likely to report erectile dysfunction, reduced sexual desire and overall dissatisfaction with their sex life than workers with no heightened bisphenol A exposure. Bisphenol A workers were also seven times more likely to have ejaculation difficulties. They were also more likely to report reduced sexual function within one year of beginning employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties. Bisphenol A in weak concentrations is sufficient to produce a negative reaction on the human testicle. The researchers found that a concentration equal to 2 ug/ litre of bisphenol A in the culture medium, a concentration equal to the average concentration generally found in the blood, urine and amniotic fluid of the population, was sufficient to produce the effects. The researchers believe that exposure of pregnant women to bisphenol A may be one of the causes of congenital masculinisation defects of the hypospadia and cryptorchidism types the frequency of which has doubled overall since the 70's. They also suggested that 'it is also possible that bisphenol A contributes to a reduction in the production of sperm and the increase in the incidence of testicular cancer in adults that have been observed in recent decades' One review has concluded that obesity may be increased as a function of bisphenol A exposure, which '...merits concern among scientists and public health officials' One study demonstrated that adverse neurological effects occur in non-human primates regularly exposed to bisphenol A at levels equal to the United States Environmental Protection Agency's (EPA) maximum safe dose of 50 ug/kg/day This research found a connection between bisphenol A and interference with brain cell connections vital to memory, learning, and mood. A further review concluded that bisphenol-A has been shown to bind to thyroid hormone receptor and perhaps have selective effects on its functions. Carcinogenicity studies have shown increases in leukaemia and testicular interstitial cell tumours in male rats. However, 'these studies have not been considered as convincing evidence of a potential cancer risk because of the doubtful statistical significance of the small differences in incidences from controls'. Another in vitro study has concluded that bisphenol A is able to induce neoplastic transformation in human breast epithelial cells [whilst a further study concluded that maternal oral exposure to low concentrations of bisphenol A, during lactation, increases mammary carcinogenesis in a rodent model. In vitro studies have suggested that bisphenol A can promote the growth of neuroblastoma cells and potently promotes invasion and metastasis of neuroblastoma cells. Newborn rats exposed to a low-dose of bisphenol A (10 ug/kg) showed increased prostate cancer susceptibility when adults. At least one study has suggested that bisphenol A suppresses DNA methylation which is involved in epigenetic changes. Bisphenol A is the isopropyl adduct of 4,4'-dihydroxydiphenyl oxide (DHDPO). A series of DHDPO analogues have been investigated as potential oestrogen receptor/anti-tumour drug carriers in the development of a class of therapeutic drugs called 'cytostatic hormones'. Oestrogenic activity is induced with 1 to 100 mg/kg body weight in animal models. Bisphenol A sealants are frequently used in dentistry for treatment of dental pits and fissures. Samples of saliva collected from dental patients during a 1-hour period following application contain the monomer. A bisphenol-A sealant has been shown to be oestrogenic in vitro; such sealants may represent an additional source of xenoestrogens in humans and may be the cause of additional concerns in children. Concerns have been raised about the possible developmental effects on the foetus/embryo or neonate resulting from the leaching of bisphenol A from epoxy linings in metal cans which come in contact with food-stuffs. Many drugs, including naproxen, salicylic acid, carbamazepine and mefenamic acid can, in vitro, significantly inhibit bisphenol A glucuronidation (detoxification) BPA belongs to the list of compounds having this property as the rodent models have shown that BPA exposure is linked with increased body weigh (obesogens)t. Several mechanisms can help explain the effect of BPA on body weight increase. A possible mechanism leading to triglyceride accumulation is the decreased production of the hormone adiponectin from all human adipose tissue tested when exposed to very low levels (below nanomolar range) of BPA in cell or explant culture settings . The expression of leptin as well as several enzymes and transcription factors is also affected by BPA exposure in vivo as well as in vitro. Together, the altered expression and activity of these important mediators of fat metabolism could explain the increase in weight following BPA exposure in rodent models. These results also suggest that, together with other obesogens, low, environmentally relevant levels of BPA may contribute to the human obesity phenomenon. All glycidyl ethers show genotoxic potential due their alkylating properties. Those glycidyl ethers that have been investigated in long term studies exhibit more or less marked carcinogenic potential. Alkylating agents may damage the stem cell which acts as the precursor to components of the blood. Loss of the stem cell may result in pancytopenia (a reduction in the number of red and white blood cells and platelets) with a latency period corresponding to the lifetime of the individual blood cells. Granulocytopenia (a reduction in granular leukocytes) develops within days and thrombocytopenia (a disorder involving platelets), within 1-2 weeks, whilst loss of erythrocytes (red blood cells) need months to become clinically manifest. Aplastic anaemia develops due to complete destruction of the stem cells. Reported adverse effects in laboratory animals include sensitization, and skin and eye irritation, as well as mutagenic and tumorigenic activity.. Testicular abnormalities (including testicular atrophy with decreased spermatogenic activity) following exposure to glycidyl ethers have been reported. Haemopoietic abnormalities following exposure to glycidyl ethers, including alteration of the leukocyte count, atrophy of lymphoid tissue, and bone marrow cytotoxicity have also been reported. These abnormalities were usually observed along with pneumonia and/or toxemia, and therefore may be secondary effects. However, especially in light of the generalized reduction in leukocytes and the atrophy of lymphoid tissues, the observed haemopoietic abnormalities may have been predisposing factors to pneumonia. While none of the individual research reports are conclusive with respect to the ability of glycidyl ethers to produce permanent changes to the testes or haemopoietic system in laboratory animals, the pattern of displayed effects is reason for concern Glycidyl ethers have been shown to cause allergic contact dermatitis in humans.
Glycidyl ethers generally cause skin sensitization in experimental animals. Necrosis of the mucous membranes of the nasal cavities was induced in mice exposed to allyl glycidyl ether. A study of workers with mixed exposures was inconclusive with regard to the effects of specific glycidyl ethers. Phenyl glycidyl ether, but not n-butyl glycidyl ether, induced morphological transformation in mammalian cells in vitro. n-Butyl glycidyl ether induced micronuclei in mice in vivo following intraperitoneal but not oral administration. Phenyl glycidyl ether did not induce micronuclei or chromosomal aberrations in vivo or chromosomal aberrations in animal cells in vitro. Alkyl C12 or C14 glycidyl ether did not induce DNA damage in cultured human cells or mutation in cultured animal cells. Allyl glycidyl ether induced mutation in Drosophila. The glycidyl ethers were generally mutagenic to bacteria. 55badger The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. #### NEOPENTYL GLYCOL DIGLYCIDYL ETHER * Anchor SDS1 #### **CARBON BLACK** Inhalation (rat) TCLo: 50 mg/m3/6h/90D-l Nil reported WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans. #### 834B-A Black Flame Retardant **Epoxy & BISPHENOL A** DIGLYCIDYL ETHER & NEOPENTYL GLYCOL DIGLYCIDYL ETHER The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit many common characteristics with respect to animal toxicology. One such oxirane is ethyloxirane; data presented here may be taken as representative. #### 834B-A Black Flame Retardant **Epoxy & BISPHENOL A** DIGLYCIDYL ETHER In mice, dermal application of bisphenol A diglycidyl ether (BADGE) (1, 10, or 100 mg/kg) for 13 weeks produced mild to moderate chronic active dermatitis. At the high dose, spongiosis and epidermal micro abscess formation were observed. In rats, dermal application of BADGE (10, 100, or 1000 mg/kg) for 13 weeks resulted in a decrease in body weight at the high dose. The no-observable effect level (NOEL) for dermal exposure was 100 mg/kg for both sexes. In a separate study, application of BADGE (same doses) five times per week for ~13 weeks not only caused a decrease in body weight but also produced chronic dermatitis at all dose levels in males and at >100 mg/kg in females (as well as in a satellite group of females given 1000 mg/kg) Reproductive and Developmental Toxicity: BADGE (50, 540, or 750 mg/kg) administered to rats via gavage for 14 weeks (P1) or 12 weeks (P2) produced decreased body weight in all males at the mid dose and in both males and females at the high dose, but had no reproductive effects. The NOEL for reproductive effects was 750 mg/kg. Carcinogenicity: IARC concluded that 'there is limited evidence for the carcinogenicity of bisphenol A diglycidyl ether in experimental animals.' Its overall evaluation was 'Bisphenol A diglycidyl ether is not classifiable as to its carcinogenicity to humans (Group 3) In a lifetime tumourigenicity study in which 90-day-old C3H mice received three dermal applications per week of BADGE (undiluted dose) for 23 months, only one out of 32 animals developed a papilloma after 16 months. A retest, in which skin paintings were done for 27 months, however, produced no tumours (Weil et al., 1963). In another lifetime skin-painting study, BADGE (dose n.p.) was also reported to be noncarcinogenic to the skin of C3H mice; it was, however, weakly carcinogenic to the skin of C57BL/6 mice (Holland et al., 1979; cited by Canter et al., 1986). In a two-year bioassay, female Fisher 344 rats dermally exposed to BADGE (1, 100, or 1000 mg/kg) showed no evidence of dermal carcinogenicity but did have low incidences of tumours in the oral cavity (U.S. EPA, 1997). Genotoxicity: In S. typhimurium strains TA100 and TA1535, BADGE (10-10,000 ug/plate) was mutagenic with and without S9; negative results were obtained in TA98 and TA1537 (Canter et al., 1986; Pullin, 1977). In a spot test, BADGE (0.05 or 10.00 mg) failed to show mutagenicity in strains TA98 and TA100 (Wade et al., 1979). Negative results were also obtained in the body fluid test using urine of female BDF and ICR mice (1000 mg/kg BADGE), the mouse host-mediated assay (1000 mg/kg), micronucleus test (1000 mg/kg), and dominant lethal assay (~3000 mg/kg). Immunotoxicity: Intracutaneous injection of diluted BADGE (0.1 mL) three times per week on alternate days (total of 8 injections) followed by a three-week incubation period and a challenge dose produced sensitisation in 19 of 20 guinea pigs Consumer exposure to BADGE is almost exclusively from migration of BADGE from can coatings into food. Using a worst-case scenario that assumes BADGE migrates at the same level into all types of food, the estimated per capita daily intake for a 60-kg individual is approximately 0.16 ug/kg body weight/day. A review of one- and two-generation reproduction studies and developmental investigations found no evidence of reproductive or endocrine toxicity, the upper ranges of dosing being determined by maternal toxicity. The lack of endocrine toxicity in the reproductive and developmental toxicological tests is supported by negative results from both in vivo and in vitro assays designed specifically to detect oestrogenic and androgenic properties of BADGE. An examination of data from sub-chronic and chronic toxicological studies support a NOAEL of 50 mg/ kg/body weight day from the 90-day study, and a NOAEL of 15 mg/kg body weigh/day (male rats) from the 2-year carcinogenicity study. Both NOAELS are considered appropriate for risk assessment. Comparing the estimated daily human intake of 0.16 ug/kg body weight/day with the NOAELS of 50 and 15 mg/kg body weight/day shows human exposure to BADGE from can coatings is between 250,000 and 100,000-fold lower than the NOAELs from the most sensitive toxicology tests. These large margins of safety together with lack of reproductive, developmental, endocrine and carcinogenic effects supports the continued use of BADGE for use in articles intended to come into contact with foodstuffs. #### BISPHENOL A DIGLYCIDYL ETHER & NEOPENTYL GLYCOL DIGLYCIDYL ETHER for 1,2-butylene oxide (ethyloxirane): Ethyloxirane increased the incidence of tumours of the respiratory system in male and female rats exposed via inhalation. Significant increases in nasal papillary adenomas and combined alveolar/bronchiolar adenomas and carcinomas were observed in male rats exposed to 1200 mg/m3 ethyloxirane via inhalation for 103 weeks. There was also a significant positive trend in the incidence of combined alveolar/bronchiolar adenomas and carcinomas. Nasal papillary adenomas were also observed in 2/50 high-dose female rats with none occurring in control or low-dose animals. In mice exposed chronically via inhalation, one male mouse developed a squamous cell papilloma in the nasal cavity (300 mg/m3) but other tumours were not observed. Tumours were not observed in mice exposed chronically via dermal exposure. When trichloroethylene containing 0.8% ethyloxirane was administered orally to mice for up to 35 weeks, followed by 0.4% from weeks 40 to 69, squamous-cell carcinomas of the forestomach occurred in 3/49 males (p=0.029, age-adjusted) and 1/48 females at week 106. Trichloroethylene administered alone did not induce these tumours and they were not observed in control animals . Two structurally related substances, oxirane (ethylene oxide) and methyloxirane (propylene oxide), which are also direct-acting alkylating agents, have been classified as carcinogenic # ALUMINA HYDRATE & ALUMINIUM OXIDE & CARBON BLACK No significant acute toxicological data identified in literature search. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | ✓ | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: ★ – Data either not available or does not fill the criteria for classification 0.57mg/l 0.46mg/l >0.065ma/l Data available to make classification #### 11.2.1. Endocrine Disruption Properties Not Available #### **SECTION 12 Ecological information** alumina hydrate LC50 EC50 EC50 48h 96h # 12.1. Toxicity | 834B-A Black Flame Retardant | Endpoint | Test Duration (hr) | Species | Value | Sour | ce | | |------------------------------|---------------|----------------------------------|-----------------------------|---------------|----------|---------------|--| | Ероху | Not Available | Not Available | Not Available | Not Available | Not A | Not Available | | | | | | | | | | | | | Endpoint | Test Duration (hr) | Species | | Value | Source | | | bisphenol A diglycidyl ether | EC50 | 72h | Algae or other aquatic p | lants | 9.4mg/l | 2 | | | | LC50 | 96h | Fish | |
1.2mg/l | 2 | | | | EC50 | 48h | Crustacea | | 1.1mg/l | 2 | | | | NOEC(ECx) | 504h | Crustacea | | 0.3mg/l | 2 | | | | | | | | | | | | | Endpoint | Test Duration (hr) Species Value | | Source | | | | | | NOEC(ECx) | 72h | Algae or other aquatic plan | nts : | >100mg/l | 1 | | Crustacea Algae or other aquatic plants 2 4 2 | | Endpoint | Test Duration (hr) | | Species | | | Value | | Source | |-----------------------------|---|--------------------|-------|--|----------|-------------------|-----------|-----------|--------| | | NOEC(ECx) | 72h | | Algae or other aquatic plants | | | 3.57mg | /I | 2 | | ammonium polyphosphate | EC50 | 72h | | Algae or other aquatic plants | | | >97.1mg/l | | 2 | | | LC50 | 96h | | Fish | | >100mg/l | | 2 | | | | EC50 | 48h | | Crustacea | | | >100mg | g/l | 2 | | | Endpoint | Test Duration (hr) | Sne | cies | | Value | | | Source | | | EC50 | 72h | | ae or other aquatic plant | 's | 0.2mg | | | 2 | | | EC50 | 48h | - | stacea | | 1.5mg | | | 2 | | aluminium oxide | LC50 | 96h | Fish | | | _ | -0.108mg | ı/l | 2 | | | NOEC(ECx) | 72h | Alga | ae or other aquatic plant | ts. | >100r | | <u> </u> | 1 | | | EC50 | 96h | - | ae or other aquatic plant | | 0.024 | | | 2 | | | | ' | | | | | | | | | neopentyl glycol diglycidyl | Endpoint | Test Duration (hr) | | Species Value | | | Source | | | | ether | Not Available | Not Available | | Not Available | Not Avai | lable | | Not Avail | able | | | Endpoint | Test Duration (hr) | | Species | | | Value | | Source | | | EC50 | 72h | | Algae or other aquatic p | olants | | 40.2mg | /I | 2 | | | LC50 | 96h | | Fish | | | 1.793m | g/l | 2 | | zinc borate | EC50 | 48h | | Crustacea | | | 1mg/l | | 2 | | | NOEC(ECx) | 768h | | Fish | | | 0.009m | g/l | 2 | | | EC50 | 96h / | | Algae or other aquatic plants 15.4mg/l | | | /I | 2 | | | | Endpoint | Test Duration (hr) | Spec | ies | , | Value | | | Source | | | EC50 | 72h | | or other aquatic plants | | >0.2mg/l | | | 2 | | carbon black | LC50 | 96h | Fish | o o o o o o o o o o o o o o o o o o o | | >100mg/l | | | 2 | | | EC50 | 48h | | | | 33.076-41.968mg/l | | ı/I | 4 | | | NOEC(ECx) | 24h | Crust | | | 3200mg/ | | | 1 | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assess Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data | | | | | | | | | On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems. Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. Liquid epoxy resins and some reactive diluents are not readily biodegradable, although its epoxy functional groups are hydrolysed in contact with water, they have the potential to bio-accumulate and are moderately toxic to aquatic organisms. They are generally classified as dangerous for the environment according to the European Union classification criteria. Uncured solid resins on the other hand are not readily bio-available, not toxic to aquatic and terrestrial organisms, not readily biodegradable, but hydrolysable. They present no significant hazard for the environment. Reactive diluents generally have a low to moderate potential for bioconcentration (tendency to accumulate in the food chain) and a high to very high potential for mobility in soil. Small amounts that escape to the atmosphere will photodegrade. They would not be expected to persist in the environment. Most reactive diluents should be considered slightly to moderately toxic to aquatic organisms on an acute basis while some might also be considered harmful to the environment. Environmental toxicity is a function of the n-octanol/water partition coefficient (log Pow, log Kow). Compounds with log Pow >5 act as neutral organics, but at a lower log Pow, the toxicity of epoxide-containing polymers is greater than that predicted for simple narcotics. Significant environmental findings are limited. Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit common characteristics with respect to environmental fate and ecotoxicology. One such oxirane is ethyloxirane and data presented here may be taken as representative. for 1,2-butylene oxide (ethyloxirane): Environmental fate: Ethyloxirane is highly soluble in water and has a very low soil-adsorption coefficient, which suggests that if released to water, adsorption of ethyloxirane to sediment and suspended solids is not expected. Volatilisation of ethyloxirane from water surfaces would be expected based on the moderate estimated Henry's Law constant. If ethyloxirane is released to soil, it is expected to have low adsorption and thus very high mobility. Volatilisation from moist soil and dry soil surfaces is expected, based on its vapour pressure. It is expected that ethyloxirane exists solely as a vapour in ambient atmosphere, based on its very high vapour pressure. Ethyloxirane may also be removed from the atmosphere by wet deposition processes, considering its relatively high water solubility. Persistence: The half-life in air is about 5.6 days from the reaction of ethyloxirane with photochemically produced hydroxyl radicals which indicates that this chemical meets the persistence criterion in air (half-life of = 2 days)*. Ethyloxirane is hydrolysable, with a half-life of 6.5 days, and biodegradable up to 100% degradation and is not expected to persist in water. A further model-predicted biodegradation half-life of 15 days in water was obtained and used to predict the half-life of this chemical in soil and sediment by applying Boethling's extrapolation factors (t1/2water:t1/2 soil:t1/2sediment = 1:1:4) (Boethling 1995). According to these values, it can be concluded that ethyloxirane does not meet the persistence criteria in water and soil (half-lives = 182 days) and sediments (half-life = 365 days). Experimental and modelled log Kow values of 0.68 and 0.86, respectively, indicate that the potential for bioaccumulation of ethyloxirane in organisms is likely to be low. Modelled bioaccumulation -factor (BAF) and bioconcentration -factor (BCF) values of 1 to 17 L/kg indicate that ethyloxirane does not meet the bioaccumulation criteria (BCF/BAF = 5000)* Ecotoxicity: Experimental ecotoxicological data for ethyloxirane (OECD 2001) indicate low to moderate toxicity to aquatic organisms. For fish and water flea, acute LC50/EC50 values vary within a narrow range of 70-215 mg/L; for algae, toxicity values exceed 500 mg/L, while for bacteria they are close to 5000 mg/L ^{*} Persistence and Bioaccumulation Regulations (Canada 2000) Reactive diluents which are only slightly soluble in water and do not evaporate quickly are expected to sink to the bottom or float to the top, depending on the density, where they would be expected to biodegrade slowly. In air ammonia is persistent whilst, in water, it biodegrades rapidly to nitrate, producing a high oxygen demand. Ammonia is strongly adsorbed to soil. Ammonia is non-persistent in water (half-life 2 days) and is moderately toxic to fish under normal temperature and pH conditions. Ammonia is harmful to aquatic life at low concentrations but does not concentrate in the food chain. Ammonium ions may be toxic to fish at 0.3 mg/l Drinking Water Standards: 0.5 mg/l (UK max.) 1.5 mg/l (WHO Levels) Soil Guidelines: none available Air Quality Standards: none available. The principal problems of phosphate contamination of the environment relates to eutrophication processes in lakes and ponds. Phosphorus is an essential plant nutrient and is usually the limiting nutrient for blue-green algae. A lake undergoing eutrophication shows a rapid growth of algae in surface waters. Planktonic algae cause turbidity and flotation films. Shore algae cause ugly muddying, films and damage to reeds. Decay of these algae causes oxygen depletion in the deep water and shallow water near the shore. The process is self-perpetuating because anoxic conditions at the sediment/water interface causes the release of more adsorbed phosphates from the sediment. The growth of algae produces undesirable effects on the treatment of water for drinking purposes, on fisheries, and on the use of lakes for recreational purposes. For aluminium and its compounds and salts: Despite its prevalence in the environment, no known form of life uses aluminium salts metabolically. In keeping with its pervasiveness, aluminium is well tolerated by plants and animals. Owing to their prevalence, potential beneficial (or otherwise) biological roles of aluminium compounds are of continuing interest. #### **Environmental fate:** Aluminium occurs in the environment in the form of silicates, oxides and hydroxides, combined with other elements such as sodium, fluorine and arsenic complexes with organic matter. Acidification of soils releases aluminium as a transportable solution. Mobilisation of aluminium by acid rain results in
aluminium becoming available for plant uptake. As an element, aluminium cannot be degraded in the environment, but may undergo various precipitation or ligand exchange reactions. Aluminium in compounds has only one oxidation state (+3), and would not undergo oxidation-reduction reactions under environmental conditions. Aluminium can be complexed by various ligands present in the environment (e.g., fulvic and humic acids). The solubility of aluminium in the environment will depend on the ligands present and the pH. The trivalent aluminum ion is surrounded by six water molecules in solution. The hydrated aluminum ion, [Al(H2O)6]3+, undergoes hydrolysis, in which a stepwise deprotonation of the coordinated water ligands forms bound hydroxide ligands (e.g., [Al(H2O)5(OH)]2+, [Al(H2O)4(OH)2]+). The speciation of aluminum in water is pH dependent. The hydrated trivalent aluminum ion is the predominant form at pH levels below 4. Between pH 5 and 6, the predominant hydrolysis products are Al(OH)2+ and Al(OH)2+, while the solid Al(OH)3 is most prevalent between pH 5.2 and 8.8. The soluble species Al(OH)4- is the predominant species above pH 9, and is the only species present above pH 10. Polymeric aluminum hydroxides appear between pH 4.7 and 10.5, and increase in size until they are transformed into colloidal particles of amorphous Al(OH)3, which crystallise to gibbsite in acid waters. Polymerisation is affected by the presence of dissolved silica; when enough silica is present, aluminum is precipitated as poorly crystallised clay mineral species. Hydroxyaluminum compounds are considered amphoteric (e.g., they can act as both acids and bases in solution). Because of this property, aluminum hydroxides can act as buffers and resist pH changes within the narrow pH range of 4-5. Monomeric aluminum compounds, typified by aluminum fluoride, chloride, and sulfate, are considered reactive or labile compounds, whereas polymeric aluminum species react much more slowly in the environment. Aluminum has a stronger attraction for fluoride in an acidic environment compared to other inorganic ligand. The adsorption of aluminum onto clay surfaces can be a significant factor in controlling aluminum mobility in the environment, and these adsorption reactions, measured in one study at pH 3.0-4.1, have been observed to be very rapid. However, clays may act either as a sink or a source for soluble aluminum depending on the degree of aluminum saturation on the clay surface. Within the pH range of 5-6, aluminum complexes with phosphate and is removed from solution. Because phosphate is a necessary nutrient in ecological systems, this immobilization of both aluminum and phosphate may result in depleted nutrient states in surface water. Plant species and cultivars of the same species differ considerably in their ability to take up and translocate aluminum to above-ground parts. Tea leaves may contain very high concentrations of aluminum, >5,000 mg/kg in old leaves. Other plants that may contain high levels of aluminum include Lycopodium (Lycopodiaceae), a few ferns, Symplocos (Symplocaceae), and Orites (Proteaceae). Aluminum is often taken up and concentrated in root tissue. In sub-alpine ecosystems, the large root biomass of the Douglas fir, Abies amabilis, takes up aluminum and immobilizes it, preventing large accumulation in above-ground tissue. It is unclear to what extent aluminum is taken up into root food crops and leafy vegetables. An uptake factor (concentration of aluminum in the plant/concentration of aluminum in soil) of 0.004 for leafy vegetables and 0.00065 for fruits and tubers has been reported, but the pH and plant species from which these uptake factors were derived are unclear. Based upon these values, however, it is clear that aluminum is not taken up in plants from soil, but is instead biodiluted. Aluminum concentrations in rainbow trout from an alum-treated lake, an untreated lake, and a hatchery were highest in gill tissue and lowest in muscle. Aluminum residue analyses in brook trout have shown that whole-body aluminum content decreases as the fish advance from larvae to juveniles. These results imply that the aging larvae begin to decrease their rate of aluminum uptake, to eliminate aluminum at a rate that exceeds uptake, or to maintain approximately the same amount of aluminum while the body mass increases. The decline in whole-body aluminum residues in juvenile brook trout may be related to growth and dilution by edible muscle tissue that accumulated less aluminum than did the other tissues. The greatest fraction of the gill-associated aluminum was not sorbed to the gill tissue, but to the gill mucus. It is thought that mucus appears to retard aluminum transport from solution to the membrane surface, thus delaying the acute biological response of the fish. It has been reported that concentrations of aluminum in whole-body tissue of the Atlantic salmon exposed to high concentrations of aluminum ranging from 3 ug/g (for fish exposed to 33 ug/L) to 96 ug/g (for fish exposed to 264 ug/L) at pH 5.5. After 60 days of exposure, BCFs ranged from 76 to 190 and were directly related to the aluminum exposure concentration. In acidic waters (pH 4.6-5.3) with low concentrations of calcium (0.5-1.5 mg Ca/L), labile aluminum between 25 and 75 ug/L is toxic. Because aluminum is toxic to many aquatic species, it is not bioaccumulated to a significant degree (BCF <300) in most fish and shellfish; therefore, consumption of contaminated fish does not appear to be a significant source of aluminum exposure in humans. Bioconcentration of aluminum has also been reported for several aquatic invertebrate species. BCF values ranging from 0.13 to 0.5 in the whole-body were reported for the snail. Bioconcentration of aluminum has also been reported for aquatic insects. #### Ecotoxicity: #### Freshwater species pH >6.5 Fish: Acute LC50 (48-96 h) 5 spp: 0.6 (Salmo salar) - 106 mg/L; Chronic NOEC (8-28 d): 7 spp,NOEC, 0.034-7.1 mg/L. The lowest measured chronic figure was an 8-d LC50 of 0.17 mg/L for Micropterus sp. Amphibian: Acute LC50 (4 d): *Bufo americanus*, 0.86-1.66 mg/L; Chronic LC50 (8-d) 2.28 mg/L Crustaceans LC50 (48 h): 1 sp 2.3-36 9 mg/L; Chronic NOEC (7-28 d) 3 spp, 0.136-1.72 mg/L Algae EC50 (96 h): population growth, 0.46-0.57 mg/L; 2 spp, chronic NOEC, 0.8-2.0 mg/L #### Freshwater species pH <6.5 (all between pH 4.5 and 6.0) Fish LC50 (24-96 h): 4 spp, 0.015 (S. trutta) - 4.2 mg/L; chronic data on Salmo trutta, LC50 (21-42 d) 0.015- 0.105 mg/L Amphibians LC50 (4-5 d): 2 spp, 0.540-2.670 m/L (absolute range 0.40-5.2 mg/L) Alga: 1 sp NOEC growth 2.0 mg/L Among freshwater aquatic plants, single-celled plants are generally the most sensitive to aluminium. Fish are generally more sensitive to aluminium than aquatic invertebrates. Aluminium is a gill toxicant to fish, causing both ionoregulatory and respiratory effects. The bioavailability and toxicity of aluminium is generally greatest in acid solutions. Aluminium in acid habitats has been observed to be toxic to fish and phytoplankton. Aluminium is generally more toxic over the pH range 4.4.5.4, with a maximum toxicity occurring around pH 5.0.5.2. The inorganic single unit aluminium species (Al(OH)2 +) is thought to be the most toxic. Under very acid conditions, the toxic effects of the high H+ concentration appear to be more important than the effects of low concentrations of aluminium; at approximately neutral pH values, the toxicity of aluminium is greatly reduced. The solubility of aluminium is also enhanced under alkaline conditions, due to its amphoteric character, and some researchers found that the acute toxicity of aluminium increased from pH 7 to pH 9. However, the opposite relationship was found in other studies. The uptake and toxicity of aluminium in freshwater organisms generally decreases with increasing water hardness under acidic, neutral and alkaline conditions. Complexing agents such as fluoride, citrate and humic substances reduce the availability of aluminium to organisms, resulting in lower toxicity. Silicon can also reduce aluminium toxicity to fish. Drinking Water Standards: aluminium: 200 ug/l (UK max.) 200 ug/l (WHO guideline) chloride: 400 mg/l (UK max.) 250 mg/l (WHO guideline) fluoride: 1.5 mg/l (UK max.) 1.5 mg/l (WHO guideline) nitrate: 50 mg/l (UK max.) 50 mg/l (WHO guideline) sulfate: 250 mg/l (UK max.) Soil Guideline: none available. Air Quality Standards: none available. DO NOT discharge into sewer or waterways. #### 12.2. Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-----------------------------------|-------------------------|------------------| | bisphenol A diglycidyl ether | HIGH | HIGH | | neopentyl glycol diglycidyl ether | HIGH | HIGH | #### 12.3. Bioaccumulative potential | Ingredient | Bioaccumulation | |-----------------------------------|--------------------------| | bisphenol A diglycidyl ether | MEDIUM (LogKOW = 3.8446) | | neopentyl glycol diglycidyl ether | LOW (LogKOW = 0.2342) | ## 12.4. Mobility in soil | Ingredient | Mobility | |-----------------------------------|------------------| | bisphenol A diglycidyl ether | LOW (KOC = 1767) | | neopentyl glycol diglycidyl ether | LOW (KOC = 10) | #### 12.5. Results of PBT and vPvB assessment | | P | В | Т | |-------------------------|---------------|---------------|---------------| | Relevant available data | Not Available | Not Available | Not Available | | PBT | X | × | × | | vPvB | X | × | × | | PBT Criteria fulfilled? | | | No | | vPvB | No | | | # 12.6. Endocrine Disruption Properties Not Available # 12.7. Other adverse effects Not Available # **SECTION 13 Disposal considerations** # 13.1. Waste treatment methods Product / Packaging disposal - Containers may still present a chemical hazard/ danger when empty. - ▶ Return to supplier for reuse/ recycling if possible. #### Otherwise: - If container can not be cleaned sufficiently well to
ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. #### Waste Management Production waste from epoxy resins and resin systems should be treated as hazardous waste in accordance with National regulations. Fire retarded resins containing halogenated compounds should also be treated as special waste. Accidental spillage of resins, curing agents and their formulations should be contained and absorbed by special mineral absorbents to prevent them from entering the environment. Contaminated or surplus product should not be washed down the sink, but preferably be fully reacted to form cross-linked solids which is non-hazardous and can be more easily disposed. Finished articles made from fully cured epoxy resins are hard, infusible solids presenting no hazard to the environment. However, finished articles from flame-retarded material containing halogenated resins should be considered hazardous waste, and disposed as required by National laws. Articles made from epoxy resins, like other thermosets, can be recycled by grinding and used as fillers in other products. Another way of disposal and recovery is combustion with energy recovery. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ► Reuse - Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. | | Recycle wherever possible or consult manufacturer for recycling options. Consult State Land Waste Authority for disposal. Bury or incinerate residue at an approved site. Recycle containers if possible, or dispose of in an authorised landfill. | |-------------------------|---| | Waste treatment options | Not Available | | Sewage disposal options | Not Available | # **SECTION 14 Transport information** # **Labels Required** For 834B-375ML, 834B-2.7L NOT REGULATED by Ground ADR Special Provision 375 NOT REGULATED by Air IATA Special Provision A197 NOT REGULATED by Sea IMDG per 2.10.2.7 NOT REGULATED by ADN Special Provision 274 (The provision of 3.1.2.8 apply) ## Land transport (ADR-RID) | , | | | | |------------------------------------|--|--|--| | 14.1. UN number | 3082 | | | | 14.2. UN proper shipping name | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains bisphenol A diglycidyl ether) | | | | 14.3. Transport hazard class(es) | Class 9 Subrisk Not Applicable | | | | 14.4. Packing group | III | | | | 14.5. Environmental hazard | Environmentally hazardous | | | | 14.6. Special precautions for user | Hazard identification (Kemler) 90 Classification code M6 Hazard Label 9 Special provisions 274 335 375 601 Limited quantity 5 L Tunnel Restriction Code 3 (-) | | | # Air transport (ICAO-IATA / DGR) | 14.1. UN number | 3082 | | | | |------------------------------------|---|----------------------------|--------------------|--| | 14.2. UN proper shipping name | Environmentally hazardous substance, liquid, n.o.s. * (contains bisphenol A diglycidyl ether) | | | | | 14.3. Transport hazard class(es) | ICAO/IATA Class | 9 | | | | | ICAO / IATA Subrisk | brisk Not Applicable | | | | | ERG Code | 9L | | | | 14.4. Packing group | III | | | | | 14.5. Environmental hazard | Environmentally hazardous | | | | | | Special provisions | | A97 A158 A197 A215 | | | | Cargo Only Packing Instructions | | 964 | | | | Cargo Only Maximum Qty / Pack | | 450 L | | | 14.6. Special precautions for user | Passenger and Cargo Packing Instructions | | 964 | | | | Passenger and Cargo Maximum Qty / Pack | | 450 L | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y964 | | | | Passenger and Cargo | Limited Maximum Qty / Pack | 30 kg G | | # Sea transport (IMDG-Code / GGVSee) | 14.1. UN number | 3082 | | | |------------------------------------|---|--|--| | 14.2. UN proper shipping name | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains bisphenol A diglycidyl ether) | | | | 14.3. Transport hazard class(es) | IMDG Class 9 IMDG Subrisk Not Applicable | | | | 14.4. Packing group | III | | | | 14.5. Environmental hazard | Marine Pollutant | | | | 14.6. Special precautions for user | EMS Number F-A , S-F Special provisions 274 335 969 | | | Limited Quantities 5 L #### Inland waterways transport (ADN) | 2 | | | |---|--------------------|--| | | | | | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains bisphenol A diglycidyl ether) | | | | 9 Not Applicable | | | | | | | | Environmentally hazardous | | | | lassification code | M6 | | | pecial provisions | 274; 335; 375; 601 | | | imited quantity | 5 L | | | quipment required | PP | | | ire cones number | 0 | | | | Not Applicable | | # 14.7. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### 14.8. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |-----------------------------------|---------------| | bisphenol A diglycidyl ether | Not Available | | alumina hydrate | Not Available | | ammonium polyphosphate | Not Available | | aluminium oxide | Not Available | | neopentyl glycol diglycidyl ether | Not Available | | zinc borate | Not Available | | carbon black | Not Available | # 14.9. Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |-----------------------------------|---------------| | bisphenol A diglycidyl ether | Not Available | | alumina hydrate | Not Available | | ammonium polyphosphate | Not Available | | aluminium oxide | Not Available | | neopentyl glycol diglycidyl ether | Not Available | | zinc borate | Not Available | | carbon black | Not Available | # **SECTION 15 Regulatory information** Europe EC Inventory #### 15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture #### bisphenol A diglycidyl ether is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List European Union - European Inventory of Existing Commercial Chemical Substances EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List (EINECS) European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI Europe EC Inventory International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs alumina hydrate is found on the following regulatory lists Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) ammonium polyphosphate is found on the following regulatory lists Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances aluminium oxide is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List European Union - European Inventory of Existing Commercial Chemical Substances neopentyl glycol diglycidyl ether is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI #### zinc borate is found on the following regulatory lists Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) #### carbon black is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List of Substances Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) This safety data sheet is in compliance with the following EU legislation and its
adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs. #### 15.2. Chemical safety assessment No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier. #### **National Inventory Status** | National Inventory | Status | | |--|---|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (bisphenol A diglycidyl ether; alumina hydrate; ammonium polyphosphate; aluminium oxide; neopentyl glycol diglycidyl ether; carbon black) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS / NLP | Yes | | | Japan - ENCS | No (ammonium polyphosphate) | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | No (bisphenol A diglycidyl ether; ammonium polyphosphate; neopentyl glycol diglycidyl ether) | | | Vietnam - NCI | Yes | | | Russia - FBEPH | No (neopentyl glycol diglycidyl ether) | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | #### **SECTION 16 Other information** | Revision Date | 21/07/2021 | |---------------|------------| | Initial Date | 11/10/2017 | #### Full text Risk and Hazard codes | H351 | Suspected of causing cancer. | |------|---| | H360 | May damage fertility or the unborn child. | | H410 | Very toxic to aquatic life with long lasting effects. | | H413 | May cause long lasting harmful effects to aquatic life. | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards: EN 166 Personal eye-protection EN 340 Protective clothing EN 374 Protective gloves against chemicals and micro-organisms EN 13832 Footwear protecting against chemicals EN 133 Respiratory protective devices #### **Definitions and abbreviations** PC—TWA: Permissible Concentration-Time Weighted Average PC—STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances #### Reason for Change A-2.00 - New SDS format # 834B-B Black Flame Retardant MG Chemicals UK Limited Version No: A-2.00 Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758 Issue Date: 21/07/2021 Revision Date: 21/07/2021 L.REACH.GB.EN # SECTION 1 Identification of the substance / mixture and of the company / undertaking # 1.1. Product Identifier | Product name | 834B-B | |-------------------------------|--| | Synonyms | SDS Code: 834B-Part A; 834B-375ML, 834B-2.7L, 834B-10.8L, 834B-60L UFI:8JE0-U0PV-N009-W2HM | | Other means of identification | Black Flame Retardant | # 1.2. Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Hardener for use with epoxy resin | |--------------------------|-----------------------------------| | Uses advised against | Not Applicable | ## 1.3. Details of the supplier of the safety data sheet | Registered company name | MG Chemicals UK Limited | MG Chemicals (Head office) | | | |-------------------------|---|--|--|--| | Address | Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom | 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada | | | | Telephone | Telephone +(44) 1663 362888 +(1) 800-201-8822 | | | | | Fax | Not Available | +(1) 800-708-9888 | | | | Website | Not Available | www.mgchemicals.com | | | | Email | sales@mgchemicals.com | Info@mgchemicals.com | | | # 1.4. Emergency telephone number | Association / Organisation | Verisk 3E (Access code: 335388) | |-----------------------------------|---------------------------------| | Emergency telephone numbers | +(44) 20 35147487 | | Other emergency telephone numbers | +(0) 800 680 0425 | #### **SECTION 2 Hazards identification** # 2.1. Classification of the substance or mixture | Classified according to
GB-CLP Regulation, UK SI
2019/720 and UK SI 2020/1567
[1] | H314 - Skin Corrosion/Irritation Category 1B, H411 - Chronic Aquatic Hazard Category 2, H318 - Serious Eye Damage/Eye Irritation Category 1, H361 - Reproductive Toxicity Category 2, H317 - Skin Sensitizer Category 1 | |--|---| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 | # 2.2. Label elements Hazard pictogram(s) Signal word Danger # Hazard statement(s) | H314 | Causes severe skin burns and eye damage. | |------|--| | H411 | Toxic to aquatic life with long lasting effects. | | H361 | Suspected of damaging fertility or the unborn child. | | H317 | May cause an allergic skin reaction. | #### Supplementary statement(s) | EUH066 | Repeated exposure may cause skin dryness or cracking. | |--------|---| |--------|---| ## Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | |------|--| | P260 | Do not breathe mist/vapours/spray. | | P264 | Wash all exposed external body areas thoroughly after handling. | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | P273 | Avoid release to the environment. | | P272 | Contaminated work clothing should not be allowed out of the workplace. | # Precautionary statement(s) Response | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. | | | | |--|--|--|--| | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | | | | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | | IF exposed or concerned: Get medical advice/ attention. | | | | | Immediately call a POISON CENTER/doctor/physician/first aider. | | | | | IF ON SKIN: Wash with plenty of water and soap. | | | | | Wash contaminated clothing before reuse. | | | | | If skin irritation or rash occurs: Get medical advice/attention. | | | | | Take off contaminated clothing and wash it before reuse. | | | | | Collect spillage. | | | | | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | | | | | | | | ## Precautionary statement(s) Storage P405 Store locked up. ## Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. #### 2.3. Other hazards Inhalation and/or ingestion may produce serious health damage*. Cumulative effects may result following exposure*. Limited evidence of a carcinogenic effect*. Possible respiratory sensitizer*. REACh - Art.57-59: The mixture does not contain Substances of Very High Concern (SVHC) at the SDS print date. # **SECTION 3 Composition / information on ingredients** #### 3.1.Substances See 'Composition on ingredients' in
Section 3.2 # 3.2.Mixtures | 1.CAS No
2.EC No
3.Index No
4.REACH No | %[weight] | Name | Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 | Nanoform Particle
Characteristics | |--|-----------|---|--|--------------------------------------| | 1.68082-29-1*
2.500-191-5
3.Not Available
4.01-2119972320-44-XXXX | 38 | tall oil/
triethylenetetramine
polyamides | Eye Irritation Category 2; H319 [1] | Not Available | | 1.68333-79-9
2.269-789-9
3.Not Available
4.Not Available | 19 | ammonium
polyphosphate | Chronic Aquatic Hazard Category 4; H413 [1] | Not Available | | 1.21645-51-2
2.244-492-7
3.Not Available
4.Not Available | 18 | aluminium hydroxide | Eye Irritation Category 2; H319, EUH066 [1] | Not Available | | 1.1344-28-1.
2.215-691-6
3.Not Available
4.Not Available | 12 | aluminium oxide | EUH210 ^[1] | Not Available | | 1.112-24-3
2.203-950-6
3.612-059-00-5
4.Not Available | 5 | triethylenetetramine | Acute Toxicity (Dermal) Category 4, Skin Corrosion/Irritation Category 1B, Skin Sensitizer Category 1, Chronic Aquatic Hazard Category 3; H312, H314, H317, H412 [2] | Not Available | | 1.CAS No
2.EC No
3.Index No
4.REACH No | %[weight] | Name | Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 | Nanoform Particle
Characteristics | |--|-----------|--------------|---|--------------------------------------| | 1.12767-90-7
2.235-804-2
3.Not Available
4.Not Available | 5 | zinc borate | Eye Irritation Category 2, Reproductive Toxicity Category 1B, Chronic Aquatic Hazard Category 1; H319, H360, H410 [1] | Not Available | | 1.1333-86-4
2.215-609-9 435-640-3 422-130-0
3.Not Available
4.Not Available | 0.5 | carbon black | Carcinogenicity Category 2; H351 ^[1] | Not Available | | Legend: 1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567; 3. Classification drawn from C&L * EU IOELVs available; [e] Substance identified as having endocrine disrupting properties | | | | | #### **SECTION 4 First aid measures** 4.1. Description of first aid measures If this product comes in contact with the eves: Immediately hold eyelids apart and flush the eye continuously with running water. Figure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper ▶ Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. **Eye Contact** ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. If liquid amines come in contact with the eyes, irrigate immediately and continuously with low pressure flowing water, preferably from an eye wash fountain, for 15 to 30 minutes. For more effective flushing of the eyes, use the fingers to spread apart and hold open the eyelids. The eyes should then be "rolled" or moved in all directions. Seek immediate medical attention, preferably from an ophthalmologist. If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. ► Transport to hospital, or doctor. For amines: In case of major exposure to liquid amine, promptly remove any contaminated clothing, including rings, watches, and shoe, preferably under **Skin Contact** a safety shower Wash skin for 15 to 30 minutes with plenty of water and soap. Call a physician immediately. Remove and dry-clean or launder clothing soaked or soiled with this material before reuse. Dry cleaning of contaminated clothing may be more effective than normal laundering. Inform individuals responsible for cleaning of potential hazards associated with handling contaminated clothing. Discard contaminated leather articles such as shoes, belts, and watchbands. Note to Physician: Treat any skin burns as thermal burns. After decontamination, consider the use of cold packs and topical antibiotics. If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. ► Transport to hospital, or doctor, without delay. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. ▶ Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be Inhalation considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) For amines: All employees working in areas where contact with amine catalysts is possible should be thoroughly trained in the administration of appropriate first aid procedures - Experience has demonstrated that prompt administration of such aid can minimize the effects of accidental exposure. - Promptly move the affected person away from the contaminated area to an area of fresh air. - ▶ Keep the affected person calm and warm, but not hot. - If breathing is difficult, oxygen may be administered by a qualified person. - ▶ If breathing stops, give artificial respiration. Call a physician at once. #### For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. - If swallowed do NOT induce vomiting - If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. - Observe the patient carefully. - Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. - Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. # Transport to hospital or doctor without delay. # Ingestion - For amines: • If liquid amine are ingested, have the affected person drink several glasses of water or milk. - Do not induce vomiting. - Immediately transport to a medical facility and inform medical personnel about the nature of the exposure. The decision of whether to induce vomiting should be made by an attending physician. #### 4.2 Most important symptoms and effects, both acute and delayed See Section 11 #### 4.3. Indication of any immediate medical attention and special treatment needed for phosphate salts intoxication: - All treatments should be based on observed signs and symptoms of distress in the patient. Consideration should be given to the possibility that overexposure to materials other than this product may have occurred. - Ingestion of large quantities of phosphate salts (over 1.0 grams for an adult) may cause an osmotic catharsis resulting in diarrhoea and probable abdominal cramps. Larger doses such as 4-8 grams will almost certainly cause these effects in everyone. In healthy individuals most of the ingested salt will be excreted in the faeces with the diarrhoea and, thus, not cause any systemic toxicity. Doses greater than 10 grams hypothetically may cause systemic toxicity. - Treatment should take into consideration both anionic and cation portion of the molecule. - All phosphate salts, except calcium salts, have a hypothetical risk of hypocalcaemia, so calcium levels should be monitored. #### Treat symptomatically. For acute or short-term repeated exposures to highly alkaline materials: - Respiratory stress is uncommon but present occasionally because of soft tissue edema. - ▶ Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary. - Oxygen is given as indicated. - The presence of shock suggests perforation and mandates an intravenous line and fluid administration. - Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. Alkalis continue to cause damage after exposure. INGESTION: Milk and water are the preferred diluents No more than 2 glasses of water should be given to an adult. - ▶ Neutralising agents should never be given since exothermic heat reaction may compound injury. - * Catharsis and emesis are absolutely contra-indicated. - * Activated charcoal does not absorb alkali. - * Gastric lavage should not be used. Supportive care involves the following: - Withhold oral feedings initially. - If endoscopy confirms transmucosal injury start steroids only within the first 48 hours. - ▶ Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention - Patients should be instructed
to seek medical attention whenever they develop difficulty in swallowing (dysphagia). #### SKIN AND EYE: Injury should be irrigated for 20-30 minutes. Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology] For amines: - Certain amines may cause injury to the respiratory tract and lungs if aspirated. Also, such products may cause tissue destruction leading to stricture. If lavage is performed, endotracheal and/or esophagoscopic control is suggested. - ► No specific antidote is known - Care should be supportive and treatment based on the judgment of the physician in response to the reaction of the patient. Laboratory animal studies have shown that a few amines are suspected of causing depletion of certain white blood cells and their precursors in lymphoid tissue. These effects may be due to an immunosuppressive mechanism. Some persons with hyperreactive airways (e.g., asthmatic persons) may experience wheezing attacks (bronchospasm) when exposed to airway irritants. Lung injury may result following a single massive overexposure to high vapour concentrations or multiple exposures to lower concentrations of any pulmonary irritant material. Health effects of amines, such as skin irritation and transient corneal edema ("blue haze," "halo effect," "glaucopsia"), are best prevented by means of formal worker education, industrial hygiene monitoring, and exposure control methods. Persons who are highly sensitive to the triggering effect of non-specific irritants should not be assigned to jobs in which such agents are used, handled, or manufactured. Medical surveillance programs should consist of a pre-placement evaluation to determine if workers or applicants have any impairments (e.g., hyperreactive airways or bronchial asthma) that would limit their fitness for work in jobs with potential for exposure to amines. A clinical baseline can be established at the time of this evaluation. Periodic medical evaluations can have significant value in the early detection of disease and in providing an opportunity for health counseling. Medical personnel conducting medical surveillance of individuals potentially exposed to polyurethane amine catalysts should consider the following: - ▶ Health history, with emphasis on the respiratory system and history of infections - Physical examination, with emphasis on the respiratory system and the lymphoreticular organs (lymph nodes, spleen, etc.) - Lung function tests, pre- and post-bronchodilator if indicated - ► Total and differential white blood cell count - ▶ Serum protein electrophoresis Persons who are concurrently exposed to isocyanates also should be kept under medical surveillance. Pre-existing medical conditions generally aggravated by exposure include skin disorders and allergies, chronic respiratory disease (e.g. bronchitis, asthma, emphysema), liver disorders, kidney disease, and eye disease. Broadly speaking, exposure to amines, as characterised by amine catalysts, may cause effects similar to those caused by exposure to ammonia. As such, amines should be considered potentially injurious to any tissue that is directly contacted. Inhalation of aerosol mists or vapors, especially of heated product, can result in chemical pneumonitis, pulmonary edema, laryngeal edema, and delayed scarring of the airway or other affected organs. There is no specific treatment. Clinical management is based upon supportive treatment, similar to that for thermal burns. Persons with major skin contact should be maintained under medical observation for at least 24 hours due to the possibility of delayed reactions. Polyurethene Amine Catalysts: Guidelines for Safe Handling and Disposal Technical Bulletin June 2000 Alliance for Polyurethanes Industry #### **SECTION 5 Firefighting measures** # 5.1. Extinguishing media - ▶ Foam - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide - Water spray or fog Large fires only. #### 5.2. Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### 5.3. Advice for firefighters #### ► Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - Prevent, by any means available, spillage from entering drains or water course. - Use fire fighting procedures suitable for surrounding area. - Do not approach containers suspected to be hot - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use - For firefighting, cleaning up large spills, and other emergency operations, workers must wear a self-contained breathing apparatus with full face-piece, operated in a pressure-demand mode. - Airline and air purifying respirators should not be worn for firefighting or other emergency or upset conditions. - Paspirators should be used in conjunction with a respiratory protection program, which would include suitable fit testing and medical evaluation of the user. # Combustible. - Slight fire hazard when exposed to heat or flame. - Heating may cause expansion or decomposition leading to violent rupture of containers. - On combustion, may emit toxic fumes of carbon monoxide (CO). - May emit acrid smoke. #### Fire/Explosion Hazard Fire Fighting Mists containing combustible materials may be explosive. Combustion products include carbon dioxide (CO2) nitrogen oxides (NOx) phosphorus oxides (POx) metal oxides other pyrolysis products typical of burning organic material. When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles. May emit corrosive fumes #### **SECTION 6 Accidental release measures** ## 6.1. Personal precautions, protective equipment and emergency procedures See section 8 #### 6.2. Environmental precautions See section 12 #### 6.3. Methods and material for containment and cleaning up Environmental hazard - contain spillage. - Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. - Check regularly for spills and leaks. - Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - Control personal contact with the substance, by using protective equipment. - ▶ Contain and absorb spill with sand, earth, inert material or vermiculite - ▶ Wipe up. - ▶ Place in a suitable, labelled container for waste disposal #### Minor Spills - for amines: - If possible (i.e., without risk of contact or exposure), stop the leak. - Contain the spilled material by diking, then neutralize. - Next, absorb the neutralized product with clay, sawdust, vermiculite, or other inert absorbent and shovel into containers. - Store the containers outdoors. - ▶ Brooms and mops should be disposed of, along with any remaining absorbent, in accordance with all applicable federal, state, and local regulations and requirements - Decontamination of floors and other hard surfaces after the spilled material has been removed may be accomplished by using a 5% solution of acetic acid, followed by very hot water - Dispose of the material in full accordance with all federal, state, and local laws and regulations governing the disposal of chemical wastes. - Waste materials from an amine catalyst spill or leak may be "hazardous wastes" that are regulated under various laws. Environmental hazard - contain spillage. Chemical Class: bases For release onto land; recommended sorbents listed in order of priority. | SORBENT TYPE RANK APPLICATION COLLECTION LIMITATIONS | |--| |--| # LAND SPILL - SMALL # **Major Spills** | cross-linked polymer - particulate | 1 | shovel | shovel | R,W,SS | |------------------------------------|---|--------|-----------|-----------------| | cross-linked polymer - pillow | 1 | throw | pitchfork | R, DGC, RT | | sorbent clay - particulate | 2 | shovel | shovel | R, I, P | | foamed glass - pillow | 2 | throw | pitchfork | R, P, DGC, RT | | expanded minerals - particulate | 3 | shovel | shovel | R, I, W, P, DGC | | foamed glass - particulate | 4 | shovel | shovel | R, W, P, DGC, | LAND SPILL - MEDIUM | cross-linked polymer -particulate | 1 | blower | skiploader | R,W, SS | |-----------------------------------|---|--------|------------|----------------| | sorbent clay - particulate | 2 | blower | skiploader | R, I, P | | expanded mineral - particulate | 3 | blower | skiploader | R, I,W, P, DGC | | cross-linked polymer - pillow | 3 | throw | skiploader | R, DGC, RT | | foamed glass - particulate | 4 | blower | skiploader | R, W, P, DGC | | foamed glass - pillow | 4 | throw | skiploader | R, P, DGC., RT | #### Legend DGC: Not effective where ground cover is dense R; Not reusable I: Not incinerable P: Effectiveness reduced when rainy RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites W: Effectiveness reduced when windy Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988 - Clear area of personnel and move upwind. - ▶ Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - Prevent, by any means available, spillage from entering drains or water course. - ► Consider evacuation (or protect in place). - Stop leak if safe to do so. - Contain spill with sand, earth or vermiculite. - ▶ Collect recoverable product into labelled containers for recycling. - ▶ Neutralise/decontaminate residue (see Section 13 for specific agent). - ▶ Collect
solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains. - After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. - If contamination of drains or waterways occurs, advise emergency services. - First remove all ignition sources from the spill area - Have firefighting equipment nearby, and have firefighting personnel fully trained in the proper use of the equipment and in the procedures used in fighting a chemical fire. - Figure Spills and leaks of polyurethane amine catalysts should be contained by diking, if necessary, and cleaned up only by properly trained and equipped personnel. All others should promptly leave the contaminated area and stay upwind. - Protective equipment for cleanup crews should include appropriate respiratory protective devices and impervious clothing, footwear, and aloves - All work areas should be equipped with safety showers and eyewash fountains in good working order. - Any material spilled or splashed onto the skin should be quickly washed off. - Fightles or releases may need to be reported to federal, state, and local authorities. This reporting contingency should be a part of a site's emergency response plan. - Protective equipment should be used during emergency situations whenever there is a likelihood of exposure to liquid amines or to excessive concentrations of amine vapor. "Emergency" may be defined as any occurrence, such as, but not limited to, equipment failure, rupture of containers, or failure of control equipment that results in an uncontrolled release of amine liquid or vapor. - ► Emergency protective equipment should include: - Self-contained breathing apparatus, with full face-piece, operated in positive pressure or pressure-demand mode. - ▶ Rubber gloves - ▶ Long-sleeve coveralls or impervious full body suit - ▶ Head protection, such as a hood, made of material(s) providing protection against amine catalysts - Firefighting personnel and other on-site Emergency Responders should be fully trained in Chemical Emergency Procedures. However back-up from local authorities should be sought # 6.4. Reference to other sections Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** Safe handling # 7.1. Precautions for safe handling - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - ► WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material. - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. ▶ Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. - DO NOT allow clothing wet with material to stay in contact with skin #### Fire and explosion protection Other information #### See section 5 - Store in original containers. - Keep containers securely sealed. ▶ Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - ▶ Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - DO NOT store near acids, or oxidising agents - No smoking, naked lights, heat or ignition sources. #### 7.2. Conditions for safe storage, including any incompatibilities - ▶ Lined metal can, lined metal pail/ can. - Plastic pail. - Polvliner drum. - Packing as recommended by manufacturer. - ▶ Check all containers are clearly labelled and free from leaks. #### For low viscosity materials - Drums and jerricans must be of the non-removable head type. - ▶ Where a can is to be used as an inner package, the can must have a screwed enclosure. Suitable container - For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.): - ► Removable head packaging; - Cans with friction closures and - low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. For aluminas (aluminium oxide): Incompatible with hot chlorinated rubber. In the presence of chlorine trifluoride may react violently and ignite. - -May initiate explosive polymerisation of olefin oxides including ethylene oxide. - -Produces exothermic reaction above 200°C with halocarbons and an exothermic reaction at ambient temperatures with halocarbons in the presence of other metals. - -Produces exothermic reaction with oxygen difluoride. - -May form explosive mixture with oxygen difluoride. - -Forms explosive mixtures with sodium nitrate - -Reacts vigorously with vinvl acetate. Aluminium oxide is an amphoteric substance, meaning it can react with both acids and bases, such as hydrofluoric acid and sodium hydroxide, acting as an acid with a base and a base with an acid, neutralising the other and producing a salt. - Phosphates are incompatible with oxidising and reducing agents. - Phosphates are susceptible to formation of highly toxic and flammable phosphine gas in the presence of strong reducing agents such as hydrides. - Partial oxidation of phosphates by oxidizing agents may result in the release of toxic phosphorus oxides. - Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. Avoid contact with copper, aluminium and their alloys Amines are incompatible with: - isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. - strong reducing agents such as hydrides, due to the liberation of flammable gas. #### Storage incompatibility Amines possess a characteristic ammonia smell, liquid amines have a distinctive 'fishy' smell. Amines are formally derivatives of ammonia, wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group. Compounds with a nitrogen atom attached to a carbonyl group, thus having the structure R-CO-NR'R?, are called amides and have different chemical properties from amines. The water solubility of simple amines is enhanced by hydrogen bonding involving these lone electron pairs. Typically salts of ammonium compounds exhibit the following order of solubility in water: primary ammonium (RNH+3) > secondary ammonium (R2NH+2) > tertiary ammonium (R3NH+). Small aliphatic amines display significant solubility in many solvents, whereas those with large substituents are lipophilic. Aromatic amines, such as aniline, have their lone pair electrons conjugated into the benzene ring, thus their tendency to engage in hydrogen bonding is diminished. Their boiling points are high and their solubility in water is low. Like ammonia, amines are bases. Compared to alkali metal hydroxides, amines are weaker. - The basicity of amines depends on: - The electronic properties of the substituents (alkyl groups enhance the basicity, aryl groups diminish it). The degree of solvation of the protonated amine, which includes steric hindrance by the groups on nitrogen. Owing to inductive effects, the basicity of an amine might be expected to increase with the number of alkyl groups on the amine. Correlations are complicated owing to the effects of solvation which are opposite the trends for inductive effects. Solvation effects also dominate the basicity of Solvation significantly affects the basicity of amines. N-H groups strongly interact with water, especially in ammonium ions. Consequently, the basicity of ammonia is enhanced by 10 exp 11 by solvation. Tertiary amines are more basic than secondary amines, which are more basic than primary amines, and finally ammonia is least basic. The order of pKb's (basicities in water) does not follow this order. Similarly aniline is more basic than ammonia in the gas phase, but ten thousand times less so in aqueous solution. In aprotic polar solvents such as DMSO, DMF, and acetonitrile the energy of solvation is not as high as in protic polar solvents like water and methanol. For this reason, the basicity of amines in these aprotic solvents is almost solely governed by the electronic effect # 7.3. Specific end use(s) See section 1.2 #### **SECTION 8 Exposure controls / personal protection** #### 8.1. Control parameters | Ingredient | DNELs
Exposure Pattern Worker | PNECs
Compartment | |---|--|---| | tall oil/ triethylenetetramine polyamides | Dermal 1.1 mg/kg bw/day (Systemic, Chronic) Inhalation 3.9 mg/m³ (Systemic, Chronic) Dermal 0.56 mg/kg bw/day (Systemic, Chronic) * Inhalation 0.97 mg/m³ (Systemic, Chronic) * Oral 0.56 mg/kg bw/day (Systemic, Chronic) * | 0.004 mg/L (Water (Fresh)) 0 mg/L (Water - Intermittent release) 0.043 mg/L (Water (Marine)) 434.02 mg/kg sediment dw (Sediment (Fresh Water)) 43.4 mg/kg sediment dw (Sediment (Marine)) | | Ingredient DNELs Exposure
Pattern Worker | | PNECs
Compartment | | |--|---|--|--| | | | 86.78 mg/kg soil dw (Soil)
3.84 mg/L (STP) | | | ammonium polyphosphate | Inhalation 18.06 mg/m³ (Systemic, Chronic) Inhalation 4.45 mg/m³ (Systemic, Chronic) * Oral 1.28 mg/kg bw/day (Systemic, Chronic) * | Not Available | | | aluminium hydroxide | Inhalation 10.76 mg/m³ (Systemic, Chronic)
Inhalation 10.76 mg/m³ (Local, Chronic)
Oral 4.74 mg/kg bw/day (Systemic, Chronic) * | Not Available | | | aluminium oxide | Dermal 0.84 mg/kg bw/day (Systemic, Chronic) Inhalation 3 mg/m³ (Systemic, Chronic) Inhalation 3 mg/m³ (Local, Chronic) Dermal 0.3 mg/kg bw/day (Systemic, Chronic) * Inhalation 0.75 mg/m³ (Systemic, Chronic) * Oral 1.32 mg/kg bw/day (Systemic, Chronic) * Inhalation 0.75 mg/m³ (Local, Chronic) * | 74.9 μg/L (Water (Fresh))
20 mg/L (STP) | | | zinc borate | Dermal 1 585 mg/kg bw/day (Systemic, Chronic)
Inhalation 22.4 mg/m³ (Systemic, Chronic)
Dermal 1 205 mg/kg bw/day (Systemic, Chronic) *
Inhalation 8.3 mg/m³ (Systemic, Chronic) *
Oral 2.4 mg/kg bw/day (Systemic, Chronic) * | 2.9 mg/L (Water (Fresh)) 2.9 mg/L (Water - Intermittent release) 13.7 mg/L (Water (Marine)) 117.8 mg/kg sediment dw (Sediment (Fresh Water)) 56.5 mg/kg sediment dw (Sediment (Marine)) 5.7 mg/kg soil dw (Soil) 10 mg/L (STP) | | | carbon black | Inhalation 1 mg/m³ (Systemic, Chronic) Inhalation 0.5 mg/m³ (Local, Chronic) Inhalation 0.06 mg/m³ (Systemic, Chronic) * | 1 mg/L (Water (Fresh)) 0.1 mg/L (Water - Intermittent release) 10 mg/L (Water (Marine)) | | ^{*} Values for General Population ## Occupational Exposure Limits (OEL) ## INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |-------------------------------------|-----------------|-----------------------------------|-----------|---------------|---------------|---------------| | UK Workplace Exposure Limits (WELs) | aluminium oxide | Aluminium oxides: respirable dust | 4 mg/m3 | Not Available | Not Available | Not Available | | UK Workplace Exposure Limits (WELs) | aluminium oxide | Aluminium oxides: inhalable dust | 10 mg/m3 | Not Available | Not Available | Not Available | | UK Workplace Exposure Limits (WELs) | carbon black | Carbon black | 3.5 mg/m3 | 7 mg/m3 | Not Available | Not Available | # Emergency Limits | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |----------------------|-----------|-----------|-----------| | aluminium hydroxide | 8.7 mg/m3 | 73 mg/m3 | 440 mg/m3 | | aluminium oxide | 15 mg/m3 | 170 mg/m3 | 990 mg/m3 | | triethylenetetramine | 3 ppm | 14 ppm | 83 ppm | | carbon black | 9 mg/m3 | 99 mg/m3 | 590 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | tall oil/ triethylenetetramine polyamides | Not Available | Not Available | | ammonium polyphosphate | Not Available | Not Available | | aluminium hydroxide | Not Available | Not Available | | aluminium oxide | Not Available | Not Available | | triethylenetetramine | Not Available | Not Available | | zinc borate | Not Available | Not Available | | carbon black | 1,750 mg/m3 | Not Available | # Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | | |---|--|----------------------------------|--| | tall oil/ triethylenetetramine polyamides | Е | ≤ 0.1 ppm | | | aluminium hydroxide | E | ≤ 0.01 mg/m³ | | | triethylenetetramine | Е | ≤ 0.1 ppm | | | zinc borate | E | ≤ 0.01 mg/m³ | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | # MATERIAL DATA For aluminium oxide and pyrophoric grades of aluminium: Twenty seven year experience with aluminium oxide dust (particle size 96% 1,2 um) without adverse effects either systemically or on the lung, and at a calculated concentration equivalent to 2 mg/m3 over an 8-hour shift has lead to the current recommendation of the TLV-TWA. The limit should also apply to aluminium pyro powders whose toxicity is reportedly greater than aluminium dusts and should be protective against lung changes. #### For aluminium oxide The experimental and clinical data indicate that aluminium oxide acts as an 'inert' material when inhaled and seems to have little effect on the lungs nor does it produce significant organic disease or toxic effects when exposures are kept under reasonable control. [Documentation of the Threshold Limit Values], ACGIH, Sixth Edition #### 8.2. Exposure controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant. #### Type of Contaminant: Air Speed: 0.25-0.5 m/s solvent, vapours, degreasing etc., evaporating from tank (in still air). (50-100 f/min.) 0.5-1 m/s (100-200 aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) f/min.) 1-2.5 m/s (200-500 direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active f/min.) 2.5-10 m/s grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of (500-2000 f/min.) very high rapid air motion) # 8.2.1. Appropriate engineering controls Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # 8.2.2. Personal protection - Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure. - ▶ Chemical goggles whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted - Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection. - Alternatively a gas mask may replace splash goggles and
face shields. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] # Eye and face protection #### For amines: # SPECIAL PRECAUTION: - Because amines are alkaline materials that can cause rapid and severe tissue damage, wearing of contact lenses while working with amines is strongly discouraged. Wearing such lenses can prolong contact of the eye tissue with the amine, thereby causing more severe damage. - Appropriate eye protection should be worn whenever amines are handled or whenever there is any possibility of direct contact with liquid products, vapors, or aerosol mists. #### CAUTION: - ▶ Ordinary safety glasses or face-shields will not prevent eye irritation from high concentrations of vapour. - In operations where positive-pressure, air-supplied breathing apparatus is not required, all persons handling liquid amine catalysts or other polyurethane components in open containers should wear chemical workers safety goggles. - Eyewash fountains should be installed, and kept in good working order, wherever amines are used. # Skin protection See Hand protection below - ► Elbow length PVC gloves - ▶ When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. #### NOTE: - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use - Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. When handling liquid-grade epoxy resins wear chemically protective gloves , boots and aprons. The performance, based on breakthrough times ,of: - Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent - Butyl Rubber ranges from excellent to good - Nitrile Butyl Rubber (NBR) from excellent to fair. - Neoprene from excellent to fair Polyvinyl (PVC) from excellent to poor As defined in ASTM F-739-96 - Excellent breakthrough time > 480 min - Good breakthrough time > 20 min - Fair breakthrough time < 20 min Poor glove material degradation Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively) - DO NOT use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin). - DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use Replacement time should be considered when selecting the most appropriate glove. It may be more effective to select a glove with lower chemical resistance but which is replaced frequently than to select a more resistant glove which is reused many times For amines: - ▶ Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. - Application of a non-perfumed moisturiser is recommended - Where there is a possibility of exposure to liquid amines skin protection should include: rubber gloves, (neoprene, nitrile, or butyl). - ► DO NOT USE latex ### **Body protection** Hands/feet protection See Other protection below # Other protection - Overalls. PVC Apron. - PVC protective suit may be required if exposure severe. - Evewash unit. - Ensure there is ready access to a safety shower. # Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: #### Forsberg Clothing Performance Index'. The effect(s) of the following substance(s) are taken into account in the computergenerated selection: 834B-B Black Flame Retardant #### Respiratory protection Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Material | СРІ | |------------|-----| | BUTYL | Α | | NEOPRENE | A | | NITRILE | A | | PE/EVAL/PE | Α | | VITON | A | ^{*} CPI - Chemwatch Performance Index **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|-----------------------------| | up to 10 x ES | AK-AUS P2 | - | AK-PAPR-AUS /
Class 1 P2 | | up to 50 x ES | - | AK-AUS / Class
1 P2 | - | | up to 100 x ES | - | AK-2 P2 | AK-PAPR-2 P2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deqC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these
limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used Where engineering controls are not feasible and work practices do not reduce airborne amine concentrations below recommended exposure limits, appropriate respiratory protection should be used. In such cases, air-purifying respirators equipped with cartridges designed to protect against amines are recommended. #### 8.2.3. Environmental exposure controls See section 12 # SECTION 9 Physical and chemical properties # 9.1. Information on basic physical and chemical properties | Appearance | Black | | | |--|------------------------|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | 1.4 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | 1500 | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Available | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available BuAC = 1 | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | | Nanoform Solubility | Not Available | Nanoform Particle
Characteristics | Not Available | | Particle Size | Not Available | | | # 9.2. Other information Not Available # **SECTION 10 Stability and reactivity** A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion | 10.1.Reactivity | See section 7.2 | |--|--| | 10.2. Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | 10.3. Possibility of hazardous reactions | See section 7.2 | | 10.4. Conditions to avoid | See section 7.2 | | 10.5. Incompatible materials | See section 7.2 | | 10.6. Hazardous decomposition products | See section 5.3 | ## **SECTION 11 Toxicological information** #### 11.1. Information on toxicological effects Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. #### Inhaled Inhalation of alkaline corrosives may produce irritation of the respiratory tract with coughing, choking, pain and mucous membrane damage. Pulmonary oedema may develop in more severe cases; this may be immediate or in most cases following a latent period of 5-72 hours. Symptoms may include a tightness in the chest, dyspnoea, frothy sputum, cyanosis and dizziness. Findings may include hypotension, a weak and rapid pulse and moist rales. Inhalation of amine vapours may cause irritation of the mucous membranes of the nose and throat and lung irritation with respiratory distress and cough. Single exposures to near lethal concentrations and repeated exposures to sublethal concentrations produces trachetits, bronchitis, pneumonitis and pulmonary oedema. Aliphatic and alicyclic amines are generally well absorbed from the respiratory tract. Systemic effects include headache, nausea, faintness and anxiety. These effects are thought to be transient and are probably related to the pharmacodynamic action of the amines. Histamine release by aliphatic amines may produce bronchoconstriction and wheezing. The material has **NOT** been classified by EC Directives or other classification systems as 'harmful by inhalation'. This is because of the lack of corroborating animal or human evidence. In the absence of such evidence, care should be taken nevertheless to ensure exposure is kept to a minimum and that suitable control measures be used, in an occupational setting to control vapours, fumes and aerosols. Ingestion of alkaline corrosives may produce immediate pain, and circumoral burns. Mucous membrane corrosive damage is characterised by a white appearance and soapy feel; this may then become brown, oedematous and ulcerated. Profuse salivation with an inability to swallow or speak may also result. Even where there is limited or no evidence of chemical burns, both the oesophagus and stomach may experience a burning pain; vomiting and diarrhoea may follow. The vomitus may be thick and may be slimy (mucous) and may eventually contain blood and shreds of mucosa. Epiglottal oedema may result in respiratory distress and asphyxia. Marked hypotension is symptomatic of shock; a weak and rapid pulse, shallow respiration and clammy skin may also be evident. Circulatory collapse may occur and, if uncorrected, may produce renal failure. Severe exposures may result in oesophageal or gastric perforation accompanied by mediastinitis, substernal pain, peritonitis, abdominal rigidity and fever. Although oesophageal, gastric or pyloric stricture may be evident initially, these may occur after weeks or even months and years. Death may be quick and results from asphyxia, circulatory collapse or aspiration of even minute amounts. Death may also be delayed as a result of perforation, pneumonia or the # effects of stricture formation. Inorganic polyphosphates are used extensively in domestic and industrial products. Rats fed 10% sodium trimetaphosphate for a month exhibited transient tubular necrosis; #### Ingestion those given 10% sodium metaphosphate exhibited growth retardation; 10% sodium hexametaphosphate produced pale and swollen kidneys. Salts of this type appear to be hydrolysed in the bowel to produce phosphoric acid and systemic acidosis may result following absorption. Higher molecular weight species, absorbed from the alimentary canal, may produce hypocalcaemic tetany due to binding of ionised calcium by the absorbed phosphate. This is reported in at least one case following ingestion of sodium tripolyphosphate. Acute toxic responses to aluminium are confined to the more soluble forms. The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. Phosphates are slowly and incompletely absorbed from the gastrointestinal tract and are unlikely (other than in abuse) to produce the systemic effects which occur when introduced by other routes. Such effects include vomiting, lethargy, fever, diarrhoea, falls in blood pressure, slow pulse, cyanosis, carpal spasm, coma and tetany. These effects result following sequestration of blood calcium. Ingestion of large amounts of phosphate salts (over 1 gm for an adult) may produce osmotic catharsis resulting in diarrhoea and probably, abdominal cramp. Large doses (4-8 gm) will almost certainly produce these effects in most individuals. Most of the ingested salt will be excreted in the faeces of healthy individuals without producing systemic toxicity. Doses in excess of 10 gm may produce systemic toxicity. The material can produce severe chemical burns following direct contact with the skin. Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Contact with aluminas (aluminium oxides) may produce a form of irritant dermatitis accompanied by pruritus. Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Skin contact with alkaline corrosives may produce severe pain and burns; brownish stains may develop. The corroded area may be soft, gelatingus and necrotic: tissue destruction may be deep. #### Skin Contact Volatile amine vapours produce primary skin irritation and dermatitis. Direct local contact, with the lower molecular weight liquids, may
produce skin burns. Percutaneous absorption of simple aliphatic amines is known to produce lethal effects often the same as that for oral administration. Cutaneous sensitisation has been recorded chiefly due to ethyleneamines. Histamine release following exposure to many aliphatic amines may result in 'triple response' (white vasoconstriction, red flare and wheal) in human skin. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Direct contact with alkaline corrosives may produce pain and burns. Oedema, destruction of the epithelium, corneal opacification and iritis may occur. In less severe cases these symptoms tend to resolve. In severe injuries the full extent of the damage may not be immediately apparent with late complications comprising a persistent oedema, vascularisation and corneal scarring, permanent opacity, staphyloma, cataract, symblepharon and loss of sight. Vapours of volatile amines cause eye irritation with lachrymation, conjunctivitis and minor transient corneal oedema which results in 'halos' around lights (glaucopsia, 'blue haze', or 'blue-grey haze'). Vision may become misty and halos may appear several hours after workers are exposed to the substance This effect generally disappears spontaneously within a few hours of the end of exposure, and does not produce physiological after-effects. However oedema of the corneal epithelium, which is primarily responsible for vision disturbances, may take more than one or more days to clear, depending on the severity of exposure. Photophobia and discomfort from the roughness of the corneal surface also may occur after greater exposures. Although no detriment to the eye occurs as such, glaucopsia predisposes an affected individual to physical accidents and reduces the ability to undertake skilled tasks such as driving a vehicle. Direct local contact with the liquid may produce eye damage which may be permanent in the case of the lower molecular weight species. On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive. Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers. Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive. Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. Chronic exposure to aluminas (aluminium oxides) of particle size 1.2 microns did not produce significant systemic or respiratory system effects in workers. Epidemiologic surveys have indicated an excess of nonmalignant respiratory disease in workers exposed to aluminum oxide during abrasives production. Very fine Al2O3 powder was not fibrogenic in rats, guinea pigs, or hamsters when inhaled for 6 to 12 months and sacrificed at periods up to 12 months following the last exposure. When hydrated aluminas were injected intratracheally, they produced dense and numerous nodules of advanced fibrosis in rats, a reticulin network with occasional collagen fibres in mice and guinea pigs, and only a slight reticulin network in rabbits. Shaver's disease, a rapidly progressive and often fatal interstitial fibrosis of the lungs, is associated with a process involving the fusion of bauxite (aluminium oxide) with iron, coke and silica at 2000 deg. C. The weight of evidence suggests that catalytically active alumina and the large surface area aluminas can induce lung fibrosis(aluminosis) in experimental animals, but only when given by the intra-tracheal route. The pertinence of such experiments in relation to workplace exposure is doubtful especially since it has been demonstrated that the most reactive of the aluminas (i.e. the chi and gamma forms), when given by inhalation, are non-fibrogenic in experimental animals. However rats exposed by inhalation to refractory aluminium fibre showed mild fibrosis and possibly carcinogenic effects indicating that fibrous aluminas might exhibit different toxicology to non-fibrous forms. Aluminium oxide fibres administered by the intrapleural route produce clear evidence of carcinogenicity. Saffil fibre an artificially produced form alumina fibre used as refractories, consists of over 95% alumina, 3-4 % silica. Animal tests for fibrogenic, carcinogenic potential and oral toxicity have included in-vitro, intraperitoneal injection, intrapleural injection, inhalation, and feeding. The fibre has generally been inactive in animal studies. Also studies of Saffil dust clouds show very low respirable fraction. There is general agreement that particle size determines that the degree of pathogenicity (the ability of a micro-organism to produce infectious disease) of elementary aluminium, or its oxides or hydroxides when they occur as dusts, fumes or vapours. Only those particles small enough to enter the alveolii (sub 5 um) are able to produce pathogenic effects in the lungs. Occupational exposure to aluminium compounds may produce asthma, chronic obstructive lung disease and pulmonary fibrosis. Long-term overexposure may produce dyspnoea, cough, pneumothorax, variable sputum production and nodular interstitial fibrosis; death has been reported. Chronic interstitial pneumonia with severe cavitations in the right upper lung and small cavities in the remaining lung tissue, have been observed in gross pathology. Shaver's Disease may result from occupational exposure to fumes or dusts; this may produce respiratory distress and fibrosis with large blebs. Animal studies produce no indication that aluminium or its compounds are carcinogenic. Because aluminium competes with calcium for absorption, increased amounts of dietary aluminium may contribute to the reduced skeletal mineralisation (osteopenia) observed in preterm infants and infants with growth retardation. In very high doses, aluminium can cause neurotoxicity, and is associated with altered function of the blood-brain barrier. A small percentage of people are allergic to aluminium and experience contact dermatitis, digestive disorders, vomiting or other symptoms upon contact or ingestion of products containing aluminium, such as deodorants or antacids. In those without allergies, aluminium is not as toxic as heavy metals, but there is evidence of some toxicity if it is consumed in excessive amounts. Although the use of aluminium cookware has not been shown to lead to aluminium toxicity in general, excessive consumption of antacids containing aluminium compounds and excessive use of aluminium-containing antiperspirants provide more significant exposure levels. Studies have shown that consumption of acidic foods or liquids with aluminium significantly increases aluminium absorption, and maltol has been shown to increase the accumulation of aluminium in nervous and osseus tissue. Furthermore, aluminium increases oestrogen-related gene expression in human breast cancer cells cultured in the laboratory These salts' estrogen-like effects have led to their classification as a metalloestrogen. Some researchers have expressed concerns that the aluminium in antiperspirants may increase the risk After absorption, aluminium distributes to all tissues in animals and humans and accumulates in some, in particular bone. The main carrier of the aluminium ion in plasma is the iron binding protein, transferrin. Aluminium can enter the
brain and reach the placenta and foetus. Aluminium may persist for a very long time in various organs and tissues before it is excreted in the urine. Although retention times for aluminium appear to be longer in humans than in rodents, there is little information allowing extrapolation from rodents to the humans. At high levels of exposure, some aluminium compounds may produce DNA damage in vitro and in vivo via indirect mechanisms. The database on carcinogenicity of aluminium compounds is limited. No indication of any carcinogenic potential was obtained in mice given aluminium potassium sulphate at high levels in the diet. Aluminium has shown neurotoxicity in patients undergoing dialysis and thereby chronically exposed parenterally to high concentrations of aluminium. It has been suggested that aluminium is implicated in the aetiology of Alzheimer's disease and associated with other neurodegenerative diseases in humans. However, these hypotheses remain controversial. Several compounds containing aluminium have the potential to produce neurotoxicity (mice, rats) and to affect the male reproductive system (dogs). In addition, after maternal exposure they have shown embryotoxicity (mice) and have affected the developing nervous system in the offspring (mice, rats). The available studies have a number #### Chronic of limitations and do not allow any dose-response relationships to be established. The combined evidence from several studies in mice, rats and dogs that used dietary administration of aluminium compounds produce lowest-observed-adverse-effect levels (LOAELs) for effects on neurotoxicity, testes, embryotoxicity, and the developing nervous system of 52, 75, 100, and 50 mg aluminium/kg bw/day, respectively. Similarly, the lowest no-observed-adverse-effect levels (NOAELs) for effects on these endpoints were reported at 30, 27, 100, and for effects on the developing nervous system, between 10 and 42 mg aluminium/kg bw per day, respectively. Controversy exists over whether aluminium is the cause of degenerative brain disease (Alzheimer's disease or AD). Several epidemiological studies show a possible correlation between the incidence of AD and high levels of aluminium in drinking water. A study in Toronto, for example, found a 2.6 times increased risk in people residing for at least 10 years in communities where drinking water contained more than 0.15 mg/l aluminium compared with communities where the aluminium level was lower than 0.1 mg/l. A neurochemical model has been suggested linking aluminium exposure to brain disease. Aluminium concentrates in brain regions, notably the hippocampus, cerebral cortex and amygdala where it preferentially binds to large pyramid-shaped cells - it does not bind to a substantial degree to the smaller interneurons. Aluminium displaces magnesium in key metabolic reactions in brain cells and also interferes with calcium metabolism and inhibits phosphoinositide metabolism. Phosphoinositide normally controls calcium ion levels at critical concentrations. Under the microscope the brain of AD sufferers show thickened fibrils (neurofibrillary tangles - NFT) and plaques consisting of amyloid protein deposited in the matrix between brain cells. Tangles result from alteration of 'tau' a brain cytoskeletal protein. AD tau is distinguished from normal tau because it is hyperphosphorylated. Aluminium hyperphosphorylates tau in vitro. When AD tau is injected into rat brain NFT-like aggregates form but soon degrade. Aluminium stabilises these aggregates rendering them resistant to protease degradation. Plaque formation is also enhanced by aluminium which induces the accumulation of amyloid precursor protein in the thread-like extensions of nerve cells (axons and dendrites). In addition aluminium has been shown to depress the activity of most neuro-transmitters similarly depressed in AD (acetylcholine, norepinephrine, glutamate and GABA). Aluminium enters the brain in measurable quantities, even when trace levels are contained in a glass of tap water. Other sources of bioavailable aluminium include baking powder, antacids and aluminium products used for general food preparation and storage (over 12 months, aluminium levels in soft drink packed in aluminium cans rose from 0.05 to 0.9 mg/l). [Walton, J and Bryson-Taylor, D. - Chemistry in Australia, August 1995] In chronic animal studies inorganic polyphosphates produced growth inhibition, increased kidney weights (with calcium deposition and desquamation), bone decalcification, parathyroid hypertrophy and hyperplasia, inorganic phosphaturia, hepatic focal necrosis and alterations to the size of muscle fibres. Inorganic phosphates are not genotoxic in bacterial systems nor are they carcinogenic in rats. No reproductive or developmental toxicity was seen in studies using rats exposed to sodium hexametaphosphate or sodium trimetaphosphate. There are reports of lung damage due to excessive inhalation of alumina dust. Ingestion of large amounts of aluminium hydroxide for prolonged periods may cause phosphate depletion, especially if phosphate intake is low. This may cause loss of appetite, muscle weakness, muscular disease and even softening of the bones. These effects have not been reported in people occupationally exposed to aluminium hydroxide. Dogs given daily doses of sodium phosphate dibasic for 9-22 weeks showed calcium deposits in the kidneys (nephrocalcinosis) with disseminated atrophy of the proximal tubule. Animals fed on sodium phosphate dibasic and potassium dihydrogen phosphate, in both short- and long-term studies, showed increased bone porosity; hyperparathyroidism and soft tissue calcification were also evident. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. | | Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. | | | | |--|--|--|---------------------------|--| | 834B-B Black Flame Retardant | TOXICITY IRRITATION Not Available Not Available | | | | | tall oil/ triethylenetetramine
polyamides | | | IRRITATION Not Available | | | ammonium polyphosphate | TOXICITY Dermal (rabbit) LD50: >3160 mg/kg ^[2] Inhalation(Rat) LC50; >4.85 mg/l4h ^[1] Oral(Rat) LD50; >=300<=2000 mg/kg ^[1] | | IRRITATION Not Available | | | aluminium hydroxide | TOXICITY Inhalation(Rat) LC50; >2.3 mg/l4h ^[1] Oral(Rat) LD50; >2000 mg/kg ^[1] Skin: no adverse effect observed (not irritation) Skin: no adverse effect observed (not irritation) | | | | | aluminium oxide | TOXICITY Inhalation(Rat) LC50; >2.3 mg/l4h ^[1] | IRRITATION Eye: no adverse effect observed (not | | | triethylenetetramine zinc borate | TOXICITY | IRRITATION | |--|--| | Inhalation(Rat) LC50; >2.3 mg/l4h ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | Oral(Rat) LD50; >2000 mg/kg ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | | TOXICITY | IRRITATION | |--|------------------------------------| | Dermal (rabbit) LD50: 550 mg/kg ^[2] | Eye (rabbit):20 mg/24 h - moderate | | Oral(Mouse) LD50; 38.5 mg/kg ^[2] | Eye (rabbit); 49 mg - SEVERE | | | Skin (rabbit): 490 mg open SEVERE | | | Skin (rabbit): 5 mg/24 SEVERE | | TOXICITY | IRRITATION | |--|--| | Dermal (rabbit) LD50: >2000 mg/kg ^[1] | Eye (rabbit): mild * | | Inhalation(Rat) LC50; 4.95 mg/l4h ^[1] | Eye: adverse effect observed (irritating) ^[1] | | Oral(Rat) LD50; >5000 mg/kg ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | #### Continued... | | | Skin: non-irritant * | |--------------|---|--| | | TOXICITY | IRRITATION | | carbon black | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | Oral(Rat) LD50; >8000 mg/kg ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | #### Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances #### For aluminium compounds: Aluminium present in food and drinking water is poorly absorbed through the gastrointestinal tract. The bioavailability of aluminium is dependent on the form in which it is ingested and the presence of dietary constituents with which the metal cation can complex Ligands in food can have a marked effect on absorption of aluminium, as they can either enhance uptake by forming absorbable (usually water soluble) complexes (e.g., with carboxylic acids such as citric and lactic), or reduce it by forming insoluble compounds (e.g., with phosphate or dissolved silicate). Considering the available human and animal data it is likely that the oral absorption of aluminium can vary 10-fold based on chemical form alone. Although bioavailability appears to generally parallel water solubility, insufficient data are available to directly extrapolate from solubility in water to bioavailability. For oral intake from food, the European Food Safety Authority (EFSA) has derived a tolerable weekly intake (TWI) of 1 milligram (mg) of aluminium per kilogram of bodyweight. In its health assessment, the EFSA states a medium bioavailability of 0.1 % for all aluminium compounds which are ingested with food. This corresponds to a systemically available
tolerable daily dose of 0.143 microgrammes (µg) per kilogramme (kg) of body weight. This means that for an adult weighing 60 kg, a systemically available dose of 8.6 µg per day is considered safe. Based on a neuro-developmental toxicity study of aluminium citrate administered via drinking water to rats, the Joint FAO/WHO Expert Committee on Food Additives (JECFA) established a Provisional Tolerable Weekly Intake (PTWI) of 2 mg/kg bw (expressed as aluminium) for all aluminium compounds in food, including food additives. The Committee on Toxicity of chemicals in food, consumer products and the environment (COT) considers that the derivation of this PTWI was sound and that it should be used in assessing potential risks from dietary exposure to aluminium. The Federal Institute for Risk Assessment (BfR) of Germany has assessed the estimated aluminium absorption from antiperspirants. For this purpose, the data, derived from experimental studies, on dermal absorption of aluminium from antiperspirants for healthy and damaged skin was used as a basis. At about 10.5 µg, the calculated systemic intake values for healthy skin are above the 8.6 µg per day that are considered safe for an adult weighing 60 kg. If aluminium -containing antiperspirants are used on a daily basis, the tolerable weekly intake determined by the EFSA is therefore exceeded. The values for damaged skin, for example injuries from shaving, are many times higher. This means that in case of daily use of an aluminium-containing antiperspirant alone, the TWI may be completely exhausted. In addition, further aluminium absorption sources such as food, cooking utensils and other cosmetic products must be taken into account Systemic toxicity after repeated exposure No studies were located regarding dermal effects in animals following intermediate or chronic-duration dermal exposure to various forms of aluminium. When orally administered to rats, aluminium compounds (including aluminium nitrate, aluminium sulfate and potassium aluminium sulfate) have produced various effects, including decreased gain in body weight and mild histopathological changes in the spleen, kidney and liver of rats (104 mg Al/kg bw/day) and dogs (88-93 mg Al/kg bw/day) during subchronic oral exposure. Effects on nerve cells, testes, bone and stomach have been reported at higher doses. Severity of effects increased with dose. The main toxic effects of aluminium that have been observed in experimental animals are neurotoxicity and nephrotoxicity. Neurotoxicity has also been described in patients dialysed with water containing high concentrations of aluminium, but epidemiological data on possible adverse effects in humans at lower exposures are inconsistent #### Reproductive and developmental toxicity: Studies of reproductive toxicity in male mice (intraperitoneal or subcutaneous administration of aluminium nitrate or chloride) and rabbits (administration of aluminium chloride by gavage) have demonstrated the ability of aluminium to cause testicular toxicity, decreased sperm quality in mice and rabbits and reduced fertility in mice. No reproductive toxicity was seen in females given aluminium nitrate by gavage or dissolved in drinking water. Multi-generation reproductive studies in which aluminium sulfate and aluminium ammonium sulfate were administered to rats in drinking water, showed no evidence of reproductive toxicity High doses of aluminium compounds given by gavage have induced signs of embryotoxicity in mice and rats in particular, reduced fetal body weight or pup weight at birth and delayed ossification. Developmental toxicity studies in which aluminium chloride was administered by gavage to pregnant rats showed evidence of foetotoxicity, but it was unclear whether the findings were secondary to maternal toxicity. A twelve-month neuro-development with aluminium citrate administered via the drinking water to Sprague-Dawley rats, was conducted according to Good Laboratory Practice (GLP). Aluminium citrate was selected for the study since it is the most soluble and bioavailable aluminium salt. Pregnant rats were exposed to aluminium citrate from gestational day 6 through lactation, and then the offspring were exposed post-weaning until postnatal day 364. An extensive functional observational battery of tests was performed at various times. Evidence of aluminium toxicity was demonstrated in the high (300 mg/kg bw/day of aluminium) and to a lesser extent, the mid-dose groups (100 mg/kg bw/day of aluminium). In the high-dose group, the main effect was renal damage, resulting in high mortality in the male offspring. No major neurological pathology or neurobehavioural effects were observed, other than in the neuromuscular subdomain (reduced grip strength and increased foot splay). Thus, the lowest observed adverse effect level (LOAEL) was 100 mg/kg bw/day and the no observed adverse effect level (NOAEL) was 30 mg/kg bw/day. Bioavailability of aluminium chloride, sulfate and nitrate and aluminium hydroxide was much lower than that of aluminium citrate This study was used by JECFA as key study to derive the PTWI. #### Genotoxicity Aluminium compounds were non-mutagenic in bacterial and mammalian cell systems, but some produced DNA damage and effects on chromosome integrity and segregation in vitro. Clastogenic effects were also observed in vivo when aluminium sulfate was administered at high doses by gavage or by the intraperitoneal route. Several indirect mechanisms have been proposed to explain the variety of genotoxic effects elicited by aluminium salts in experimental systems. Cross-linking of DNA with chromosomal proteins, interaction with microtubule assembly and mitotic spindle functioning, induction of oxidative damage, damage of lysosomal membranes with liberation of DNAase, have been suggested to explain the induction of structural chromosomal aberrations, sister chromatid exchanges, chromosome loss and formation of oxidized bases in experimental systems. The EFSA Panel noted that these indirect mechanisms of genotoxicity, occurring at relatively high levels of exposure, are unlikely to be of relevance for humans exposed to aluminium via the diet. Aluminium compounds do not cause gene mutations in either bacteria or mammalian cells. Exposure to aluminium compounds does result in both structural and numerical chromosome aberrations both in in-vitro and in-vitro mutagenicity tests. DNA damage is probably the result of indirect mechanisms. The DNA damage was observed only at high exposure levels. #### Carcinogenicity. The available epidemiological studies provide limited evidence that certain exposures in the aluminium production industry are carcinogenic to humans, giving rise to cancer of the lung and bladder. However, the aluminium exposure was confounded by exposure to other agents including polycyclic aromatic hydrocarbons, aromatic amines, nitro compounds and asbestos. There is no evidence of increased cancer risk in non-occupationally exposed persons. Neurodegenerative diseases. Following the observation that high levels of aluminium in dialysis fluid could cause a form of dementia in dialysis patients, a number of studies were carried out to determine if aluminium could cause dementia or cognitive impairment as a consequence of environmental exposure over long periods. Aluminium was identified, along with other elements, in the amyloid plaques that are one of the diagnostic lesions in the brain for # 834B-B Black Flame Retardant Alzheimer disease, a common form of senile and pre-senile dementia. some of the epidemiology studies suggest the possibility of an association of Alzheimer disease with aluminium in water, but other studies do not confirm this association. All studies lack information on ingestion of aluminium from food and how concentrations of aluminium in food affect the association between aluminium in water and Alzheimer disease." There are suggestions that persons with some genetic variants may absorb more aluminium than others, but there is a need for more analytical research to determine whether aluminium from various sources has a significant causal association with Alzheimer disease and other neurodegenerative diseases. Aluminium is a neurotoxicant in experimental animals. However, most of the animal studies performed have several limitations and therefore cannot be used for quantitative risk assessment. Contact sensitivity: It has been suggested that the body burden of aluminium may be linked to different iseases. Macrophagic myofasciitis and chronic fatigue syndrome can be caused by aluminium-containing adjuvants in vaccines. Macrophagic myofasciitis (MMF) has been described as a disease in adults presenting with ascending myalgia and severe fatigue following exposure to aluminium hydroxide-containing vaccines The corresponding histological findings include aluminium-containing macrophages infiltrating muscle tissue at the injection site. The hypothesis is that the long-lasting granuloma triggers the development of the systemic syndrome. Aluminium acts not only as an adjuvant, stimulating the immune system either to fend off infections or to tolerate antigens, it also acts as a sensitisers causing contact allergy and allergic contact dermatitis. In general, metal allergies are very common and aluminium is considered to be a weak allergen. A metal must be ionised to be able to act as a contact allergen, then it has to undergo haptenisation to be immunogenic and to initiate an immune response. Once inside the skin, the metal ions must bind to proteins to become immunologically reactive. The most important routes of exposure and sensitisation to aluminium are through aluminium-containing vaccines. One Swedish study showed a statistically significant association between contact allergy to aluminium and persistent litching nodules in children treated with allergen-specific immunotherapy (ASIT) Nodules were overrepresented in patients with contact allergy to
aluminium Other routes of sensitisation reported in the literature are the prolonged use of aluminium-containing antiperspirants, topical medication, and tattooing of the skin with aluminium-containing pigments. Most of the patients experienced eczematous reactions whereas tattooing caused granulomas. Even though aluminium is used extensively in industry, only a low number of cases of occupational skin sensitisation to aluminium have been reported Systemic allergic contact dermatitis in the form of flare-up reactions after re-exposure to aluminium has been documented: pruritic nodules at present and previous injection sites, eczema at the site of vaccination as well as at typically atopic localisations after vaccination with aluminium-containing vaccines and/or patch testing with aluminium, and also after use of aluminium-containing toothpaste While it is difficult to generalise about the full range of potential health effects posed by exposure to the many different amine compounds, characterised by those used in the manufacture of polyurethane and polyisocyanurate foams, it is agreed that overexposure to the majority of these materials may cause adverse health effects. - Many amine-based compounds can induce histamine liberation, which, in turn, can trigger allergic and other physiological effects, including bronchoconstriction or bronchial asthma and rhinitis. - Systemic symptoms include headache, nausea, faintness, anxiety, a decrease in blood pressure, tachycardia (rapid heartbeat), itching, erythema (reddening of the skin), urticaria (hives), and facial edema (swelling). Systemic effects (those affecting the body) that are related to the pharmacological action of amines are usually transient. Typically, there are four routes of possible or potential exposure: inhalation, skin contact, eye contact, and ingestion. #### Inhalation: Inhalation of vapors may, depending upon the physical and chemical properties of the specific product and the degree and length of exposure, result in moderate to severe irritation of the tissues of the nose and throat and can irritate the lungs. Products with higher vapour pressures have a greater potential for higher airborne concentrations. This increases the probability of worker exposure. Higher concentrations of certain amines can produce severe respiratory irritation, characterised by nasal discharge, coughing, difficulty in breathing, and chest pains. Chronic exposure via inhalation may cause headache, nausea, vomiting, drowsiness, sore throat, bronchopneumonia, and possible lung damage. Also, repeated and/or prolonged exposure to some amines may result in liver disorders, jaundice, and liver enlargement. Some amines have been shown to cause kidney, blood, and central nervous system disorders in laboratory animal studies. While most polyurethane amine catalysts are not sensitisers, some certain individuals may also become sensitized to amines and may experience respiratory distress, including asthma-like attacks, whenever they are subsequently exposed to even very small amounts of vapor. Once sensitised, these individuals must avoid any further exposure to amines. Although chronic or repeated inhalation of vapor concentrations below hazardous or recommended exposure limits should not ordinarily affect healthy individuals, chronic overexposure may lead to permanent pulmonary injury, including a reduction in lung function, breathlessness, chronic bronchitis, and immunologic lung disease. Inhalation hazards are increased when exposure to amine catalysts occurs in situations that produce aerosols, mists, or heated vapors. Such situations include leaks in fitting or transfer lines. Medical conditions generally aggravated by inhalation exposure include asthma, bronchitis, and emphysema. # Skin Contact: Skin contact with amine catalysts poses a number of concerns. Direct skin contact can cause moderate to severe irritation and injury-i.e., from simple redness and swelling to painful blistering, ulceration, and chemical burns. Repeated or prolonged exposure may also result in severe cumulative dermatitis. Skin contact with some amines may result in allergic sensitisation. Sensitised persons should avoid all contact with amine catalysts. Systemic effects resulting from the absorption of the amines through skin exposure may include headaches, nausea, faintness, anxiety, decrease in blood pressure, reddening of the skin, hives, and facial swelling. These symptoms may be related to the pharmacological action of the amines, and they are usually transient. #### Eye Contact: Amine catalysts are alkaline in nature and their vapours are irritating to the eyes, even at low concentrations. Direct contact with the liquid amine may cause severe irritation and tissue injury, and the "burning" may lead to blindness. (Contact with solid products may result in mechanical irritation, pain, and corneal injury.) Exposed persons may experience excessive tearing, burning, conjunctivitis, and corneal swelling. The corneal swelling may manifest itself in visual disturbances such as blurred or "foggy" vision with a blue tint ("blue haze") and sometimes a halo phenomenon around lights. These symptoms are transient and usually disappear when exposure ceases. Some individuals may experience this effect even when exposed to concentrations below doses that ordinarily cause respiratory irritation. The oral toxicity of amine catalysts varies from moderately to very toxic. Some amines can cause severe irritation, ulceration, or burns of the mouth, throat, esophagus, and gastrointestinal tract. Material aspirated (due to vomiting) can damage the bronchial tubes and the lungs. Affected persons also may experience pain in the chest or abdomen, nausea, bleeding of the throat and the gastrointestinal tract, diarrhea, dizziness, drowsiness, thirst, circulatory collapse, coma, and even death. Polyurethane Amine Catalysts: Guidelines for Safe Handling and Disposal; Technical Bulletin June 2000 Alliance for Polyurethanes Industry # Handling ethyleneamine products is complicated by their tendency to react with other chemicals, such as carbon dioxide in the air, which results in the formation of solid carbamates. Because of their ability to produce chemical burns, skin rashes, and asthma-like symptoms, ethyleneamines also require substantial care in handling. Higher molecular weight ethyleneamines are often handled at elevated temperatures further increasing the possibility of vapor exposure to these compounds. Because of the fragility of eye tissue, almost any eye contact with any ethyleneamine may cause irreparable damage, even blindness. A single, short exposure to ethyleneamines, may cause severe skin burns, while a single, prolonged exposure may result in the material being absorbed through the skin in harmful amounts. Exposures have caused allergic skin reactions in some individuals. Single dose oral toxicity of ethyleneamines is low. The oral LD50 for rats is in the range of 1000 to 4500 mg/kg for the ethyleneamines. In general, the low-molecular weight polyamines have been positive in the Ames assay, increase sister chromatid exchange in Chinese hamster ovary (CHO) cells, and are positive for unscheduled DNA synthesis although they are negative in the mouse micronucleus assay. It is believed # TRIETHYLENETETRAMINE that the positive results are based on its ability to chelate copper intermediates be stable enough to reach target macromolecules The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration. For alkyl polyamines: The alkyl polyamines cluster consists of organic compounds containing two terminal primary amine groups and at least one secondary amine group. Typically these substances are derivatives of ethylenediamine, propylenediamine or hexanediamine. The molecular weight range for the entire cluster is relatively narrow, ranging from 103 to 232 Acute toxicity of the alkyl polyamines cluster is low to moderate via oral exposure and a moderate to high via dermal exposure. Cluster members have been shown to be eye irritants, skin irritants, and skin sensitisers in experimental animals. Repeated exposure in rats via the oral route indicates a range of toxicity from low to high hazard. Most cluster members gave positive results in tests for potential genotoxicity. Limited carcinogenicity studies on several members of the cluster showed no evidence of carcinogenicity. Unlike aromatic amines, aliphatic amines are not expected to be potential carcinogens because they are not expected to undergo metabolic activation, nor would activated Polyamines potentiate NMDA induced whole-cell currents in cultured striatal neurons Triethylenetetramine (TETA) is a severe irritant to skin and eyes and induces skin sensitisation. TETA is of moderate acute toxicity: LD50(oral, rat) > 2000 mg/kg bw, LD50(dermal, rabbit) = 550 - 805 mg/kg bw. Acute exposure to saturated vapour via inhalation was tolerated without impairment. Exposure to to aerosol leads to reversible irritations of the mucous membranes in the respiratory tract. Following repeated oral dosing via drinking water only in mice but not in rats at concentration of 3000 ppm there were signs of impairment. The NOAEL is 600 ppm [92 mg/kg bw (oral, 90 days)]. Lifelong dermal application to mice (1.2 mg/mouse) did not result in tumour formation. There are differing results of the genetic toxicity for
TETA. The positive results of the in vitro tests may be the result of a direct genetic action as well as a result of an interference with essential metal ions. Due to this uncertainty of the in vitro tests, the genetic toxicity of TETA has to be assessed on the basis of in vivo tests. The in vivo micronucleus tests (i.p. and oral) and the SLRL test showed negative results. There are no human data on reproductive toxicity (fertility assessment). The analogue diethylenetriamine had no effects on reproduction. TETA shows developmental toxicity in animal studies if the chelating property of the substance is effective. The NOEL is 830 mg/kg bw (oral). Experience with female patients suffering from Wilson's disease demonstrated that no miscarriages and no foetal abnormalities occur during treatment with TETA.. In rats, there are several studies concerning developmental toxicity. The oral treatment of rats with 75, 375 and 750 mg/kg resulted in no effects on dams and fetuses, except slight increased fetal body weight. After oral treatment of rats with 830 or 1670 mg/kg bw only in the highest dose group increased foetal abnormalities in 27/44 fetus (69,2 %) were recorded, when simultaneously the copper content of the feed was reduced. Copper supplementation in the feed reduced significant the fetal abnormalities of the highest dose group to 3/51 (6,5 % foetus. These findings suggest that the developmental toxicity is produced as a secondary consequence of the chelating properties of TETA. Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis). #### **CARBON BLACK** Inhalation (rat) TCLo: 50 mg/m3/6h/90D-I Nil reported WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans. # 834B-B Black Flame Retardant & TRIETHYLENETETRAMINE Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. # ALUMINIUM HYDROXIDE & ALUMINIUM OXIDE & CARBON BLACK No significant acute toxicological data identified in literature search. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | ✓ | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: 💢 – Data either not available or does not fill the criteria for classification – Data available to make classification #### 11.2.1. Endocrine Disruption Properties Not Available # **SECTION 12 Ecological information** | B-B Black Flame Retardant | Endpoint | Test Duration | (hr) | Species | Value | Sou | rce | |---|---------------|---|---------|---------------------------|---------------|-------------|-----------| | B-B Black I lame Netardant | Not Available | Not Available Not Available | | Not Available | Not Available | Not a | Available | | | | | | | | | | | | Endpoint | Test Duration (hi |) S | pecies | | Value | Source | | tall oil/ triethylenetetramine polyamides | NOEC(ECx) | 72h | A | lgae or other aquatic pla | nts | 0.5mg/l | 2 | | | EC50 | 72h | A | lgae or other aquatic pla | nts | 4.34mg/l | 2 | | p, | LC50 | 96h | F | ish | | 7.07mg/l | 2 | | | EC50 | 48h | С | rustacea | | 7.07mg/l | 2 | | | | | | | | | | | | Endpoint | Test Duration (hr | | ecies | | Value | Source | | | NOEC(ECx) | 72h | | gae or other aquatic plan | | 3.57mg/l | 2 | | ammonium polyphosphate | EC50 | 72h | | gae or other aquatic plan | ts | >97.1mg/l | 2 | | | LC50 | 96h | Fis | | | >100mg/l | 2 | | | EC50 | 48h | Cr | ustacea | | >100mg/l | 2 | | | Endpoint | Test Duration (hr | Spe | ecies | | Value | Source | | | NOEC(ECx) | 72h | | ae or other aquatic plant | S | >100mg/l | 1 | | aluminium hydroxide | LC50 | 96h | Fis | | - | 0.57mg/l | 2 | | arammam nyaroxido | EC50 | 48h | | ıstacea | | >0.065mg/l | 4 | | | EC50 | 96h | | ae or other aquatic plant | s | 0.46mg/l | 2 | | | 2000 | 3011 | Alg | ac or other aquatic plant | 3 | 0.40mg/i | L | | | Endpoint | Test Duration (hr) | Speci | es | Valu | e | Source | | | EC50 | 72h | Algae | or other aquatic plants | 0.2m | ng/l | 2 | | | EC50 | 48h | Crusta | Crustacea 1.5mg | | ng/l | 2 | | aluminium oxide | LC50 | 96h | Fish | | 0.07 | 8-0.108mg/l | 2 | | | NOEC(ECx) | 72h | Algae | or other aquatic plants | >100 |)mg/l | 1 | | | EC50 | 96h | Algae | or other aquatic plants | 0.02 | 4mg/l | 2 | | | | | | | | | | | | Endpoint | Test Duration (hr) | | ecies | | Value | Source | | | ErC50 | 72h | | gae or other aquatic plan | ts | 2.5mg/l | 1 | | | LC50 | 96h | Fis | sh | | 180mg/l | 1 | | triethylenetetramine | EC50 | 72h | | gae or other aquatic plan | ts | 2.5mg/l | 1 | | | EC50 | 48h | Cr | ustacea | | 31.1mg/l | 1 | | | BCF | 1008h | Fis | sh | | <0.5 | 7 | | | EC10(ECx) | 72h | Al | gae or other aquatic plan | ts | 0.67mg/l | 1 | | | Endpoint | Test Duration (hr | Sr | pecies | | Value | Source | | | EC50 | 72h | | gae or other aquatic plar | ts | 40.2mg/l | 2 | | | LC50 | 96h | Fis | | | 1.793mg/l | 2 | | zinc borate | EC50 | 48h | | Crustacea | | 1mg/l | 2 | | | NOEC(ECx) | 768h | | Fish | | 0.009mg/l | 2 | | | EC50 | 96h | | gae or other aquatic plar | ts | 15.4mg/l | 2 | | | | | | | | | | | | Endpoint | Test Duration (hr) | Specie | S | Value | | Source | | | EC50 | 72h | Algae o | r other aquatic plants | >0.2mg | g/l | 2 | | carbon black | LC50 | 96h | Fish | | >100m | g/l | 2 | | | EC50 | 48h | Crustac | ea | 33.076 | -41.968mg/l | 4 | | | NOEC(ECx) | 24h | Crustac | ea | 3200m | g/l | 1 | | Legend: | | IUCLID Toxicity Data 2. E
quatic Toxicity Data (Esti | | | | | | On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems. Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. In air ammonia is persistent whilst, in water, it biodegrades rapidly to nitrate, producing a high oxygen demand. Ammonia is strongly adsorbed to soil. Ammonia is non-persistent in water (half-life 2 days) and is moderately toxic to fish under normal temperature and pH conditions. Ammonia is harmful to aquatic life at low concentrations but does not concentrate in the food chain. Ammonium ions may be toxic to fish at 0.3 mg/l Drinking Water Standards: 0.5 mg/l (UK max.) 1.5 mg/l (WHO Levels) Soil Guidelines: none available Air Quality Standards: none available. The principal problems of phosphate contamination of the environment relates to eutrophication processes in lakes and ponds. Phosphorus is an essential plant nutrient and is usually the limiting nutrient for blue-green algae. A lake undergoing eutrophication shows a rapid growth of algae in surface waters. Planktonic algae cause turbidity and flotation films. Shore algae cause ugly muddying, films and damage to reeds. Decay of these algae causes oxygen depletion in the deep water and shallow water near the shore. The process is self-perpetuating because anoxic conditions at the sediment/water interface causes the release of more adsorbed phosphates from the sediment. The growth of algae produces For aluminium and its compounds and salts: Despite its prevalence in the environment, no known form
of life uses aluminium salts metabolically. In keeping with its pervasiveness, aluminium is well tolerated by plants and animals. Owing to their prevalence, potential beneficial (or otherwise) biological roles of aluminium compounds are of continuing interest. #### **Environmental fate:** Aluminium occurs in the environment in the form of silicates, oxides and hydroxides, combined with other elements such as sodium, fluorine and arsenic complexes with organic Acidification of soils releases aluminium as a transportable solution. Mobilisation of aluminium by acid rain results in aluminium becoming available for plant uptake. undesirable effects on the treatment of water for drinking purposes, on fisheries, and on the use of lakes for recreational purposes. As an element, aluminum cannot be degraded in the environment, but may undergo various precipitation or ligand exchange reactions. Aluminum in compounds has only one oxidation state (+3), and would not undergo oxidation-reduction reactions under environmental conditions. Aluminum can be complexed by various ligands present in the environment (e.g., fulvic and humic acids). The solubility of aluminum in the environment will depend on the ligands present and the pH. The trivalent aluminum ion is surrounded by six water molecules in solution. The hydrated aluminum ion, [Al(H2O)6]3+, undergoes hydrolysis, in which a stepwise deprotonation of the coordinated water ligands forms bound hydroxide ligands (e.g., [Al(H2O)5(OH)]2+, [Al(H2O)4(OH)2]+). The speciation of aluminum in water is pH dependent. The hydrated trivalent aluminum ion is the predominant form at pH levels below 4. Between pH 5 and 6, the predominant hydrolysis products are Al(OH)2+ and Al(OH)2+, while the solid Al(OH)3 is most prevalent between pH 5.2 and 8.8. The soluble species Al(OH)4- is the predominant species above pH 9, and is the only species present above pH 10. Polymeric aluminum hydroxides appear between pH 4.7 and 10.5, and increase in size until they are transformed into colloidal particles of amorphous Al(OH)3, which crystallise to gibbsite in acid waters. Polymerisation is affected by the presence of dissolved silica; when enough silica is present, aluminum is precipitated as poorly crystallised clay mineral species. Hydroxyaluminum compounds are considered amphoteric (e.g., they can act as both acids and bases in solution). Because of this property, aluminum hydroxides can act as buffers and resist pH changes within the narrow pH range of 4-5. Monomeric aluminum compounds, typified by aluminum fluoride, chloride, and sulfate, are considered reactive or labile compounds, whereas polymeric aluminum species react much more slowly in the environment. Aluminum has a stronger attraction for fluoride in an acidic environment compared to other inorganic ligand. The adsorption of aluminum onto clay surfaces can be a significant factor in controlling aluminum mobility in the environment, and these adsorption reactions, measured in one study at pH 3.0-4.1, have been observed to be very rapid. However, clays may act either as a sink or a source for soluble aluminum depending on the degree of aluminum saturation on the clay surface. Within the pH range of 5-6, aluminum complexes with phosphate and is removed from solution. Because phosphate is a necessary nutrient in ecological systems, this immobilization of both aluminum and phosphate may result in depleted nutrient states in surface water Plant species and cultivars of the same species differ considerably in their ability to take up and translocate aluminum to above-ground parts. Tea leaves may contain very high concentrations of aluminum, >5,000 mg/kg in old leaves. Other plants that may contain high levels of aluminum include Lycopodium (Lycopodiaceae), a few ferns, Symplocos (Symplocaceae), and Orites (Proteaceae). Aluminum is often taken up and concentrated in root tissue. In sub-alpine ecosystems, the large root biomass of the Douglas fir, Abies amabilis, takes up aluminum and immobilizes it, preventing large accumulation in above-ground tissue. It is unclear to what extent aluminum is taken up into root food crops and leafy vegetables. An uptake factor (concentration of aluminum in the plant/concentration of aluminum in soil) of 0.004 for leafy vegetables and 0.00065 for fruits and tubers has been reported, but the pH and plant species from which these uptake factors were derived are unclear. Based upon these values, however, it is clear that aluminum is not taken up in plants from soil, but is instead biodiluted. Aluminum concentrations in rainbow trout from an alum-treated lake, an untreated lake, and a hatchery were highest in gill tissue and lowest in muscle. Aluminum residue analyses in brook trout have shown that whole-body aluminum content decreases as the fish advance from larvae to juveniles. These results imply that the aging larvae begin to decrease their rate of aluminum uptake, to eliminate aluminum at a rate that exceeds uptake, or to maintain approximately the same amount of aluminum while the body mass increases. The decline in whole-body aluminum residues in juvenile brook trout may be related to growth and dilution by edible muscle tissue that accumulated less aluminum than did the other tissues The greatest fraction of the gill-associated aluminum was not sorbed to the gill tissue, but to the gill mucus. It is thought that mucus appears to retard aluminum transport from solution to the membrane surface, thus delaying the acute biological response of the fish. It has been reported that concentrations of aluminum in whole-body tissue of the Atlantic salmon exposed to high concentrations of aluminum ranging from 3 ug/g (for fish exposed to 33 ug/L) to 96 ug/g (for fish exposed to 264 ug/L) at pH 5.5. After 60 days of exposure, BCFs ranged from 76 to 190 and were directly related to the aluminum exposure concentration. In acidic waters (pH 4.6-5.3) with low concentrations of calcium (0.5-1.5 mg Ca/L), labile aluminum between 25 and 75 ug/L is toxic. Because aluminum is toxic to many aquatic species, it is not bioaccumulated to a significant degree (BCF <300) in most fish and shellfish; therefore, consumption of contaminated fish does not appear to be a significant source of aluminum exposure in humans. Bioconcentration of aluminum has also been reported for several aquatic invertebrate species. BCF values ranging from 0.13 to 0.5 in the whole-body were reported for the snail. Bioconcentration of aluminum has also been reported for aquatic insects. # **Ecotoxicity:** # Freshwater species pH >6.5 Fish: Acute LC50 (48-96 h) 5 spp: 0.6 (Salmo salar) - 106 mg/L; Chronic NOEC (8-28 d): 7 spp,NOEC, 0.034-7.1 mg/L. The lowest measured chronic figure was an 8-d LC50 of 0.17 mg/L for Micropterus sp Amphibian: Acute LC50 (4 d): Bufo americanus, 0.86-1.66 mg/L; Chronic LC50 (8-d) 2.28 mg/L Crustaceans LC50 (48 h): 1 sp 2.3-36 9 mg/L; Chronic NOEC (7-28 d) 3 spp, 0.136-1.72 mg/L Algae EC50 (96 h): population growth, 0.46-0.57 mg/L; 2 spp, chronic NOEC, 0.8-2.0 mg/L # Freshwater species pH <6.5 (all between pH 4.5 and 6.0) Fish LC50 (24-96 h): 4 spp, 0.015 (S. trutta) - 4.2 mg/L; chronic data on Salmo trutta, LC50 (21-42 d) 0.015- 0.105 mg/L Amphibians LC50 (4-5 d): 2 spp, 0.540-2.670 m/L (absolute range 0.40-5.2 mg/L) Alga: 1 sp NOEC growth 2.0 mg/L Among freshwater aquatic plants, single-celled plants are generally the most sensitive to aluminium. Fish are generally more sensitive to aluminium than aquatic invertebrates. Aluminium is a gill toxicant to fish, causing both ionoregulatory and respiratory effects. The bioavailability and toxicity of aluminium is generally greatest in acid solutions. Aluminium in acid habitats has been observed to be toxic to fish and phytoplankton. Aluminium is generally more toxic over the pH range 4.4.5.4, with a maximum toxicity occurring around pH 5.0.5.2. The inorganic single unit aluminium species (Al(OH)2 +) is thought to be the most toxic. Under very acid conditions, the toxic effects of the high H+ concentration appear to be more important than the effects of low concentrations of aluminium; at approximately neutral pH values, the toxicity of aluminium is greatly reduced. The solubility of aluminium is also enhanced under alkaline conditions, due to its amphoteric character, and some researchers found that the acute toxicity of aluminium increased from pH 7 to pH 9. However, the opposite relationship was found in other studies. The uptake and toxicity of aluminium in freshwater organisms generally decreases with increasing water hardness under acidic, neutral and alkaline conditions. Complexing agents such as fluoride, citrate and humic substances reduce the availability of aluminium to organisms, resulting in lower toxicity. Silicon can also reduce aluminium toxicity to fish. Drinking Water Standards: aluminium: 200 ug/l (UK max.) 200 ug/l (WHO guideline) chloride: 400 mg/l (UK max.) 250 mg/l (WHO guideline) fluoride: 1.5 mg/l (UK max.) 1.5 mg/l (WHO guideline) nitrate: 50 mg/l (UK max.) 50 mg/l (WHO guideline) sulfate: 250 mg/l (UK max.) Soil Guideline: none available. Air Quality Standards: none available. Prevent, by any means available, spillage from entering drains or water courses. DO NOT discharge into sewer or waterways #### 12.2. Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |----------------------|-------------------------|------------------| | triethylenetetramine | LOW | LOW | #### 12.3. Bioaccumulative potential | Ingredient | Bioaccumulation | |----------------------|-----------------| | triethylenetetramine | LOW (BCF = 5) | #### 12.4. Mobility in soil | Ingredient | Mobility | |----------------------|-------------------| | triethylenetetramine | LOW (KOC = 309.9) | #### 12.5. Results of PBT and vPvB assessment | P | В | Т | |---------------|---------------|---------------------------------| | Not Available | Not Available | Not
Available | | X | × | × | | × | X | × | | | | No | | | | No | | | Not Available | Not Available Not Available X | #### 12.6. Endocrine Disruption Properties Not Available #### 12.7. Other adverse effects Not Available #### **SECTION 13 Disposal considerations** #### 13.1. Waste treatment methods - Containers may still present a chemical hazard/ danger when empty. - Return to supplier for reuse/ recycling if possible. #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ► Reduction - ► Reuse - ► Recycling - Disposal (if all else fails) #### Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Treat and neutralise at an approved treatment plant. - Treatment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. Waste treatment options Sewage disposal options Not Available Not Available #### **SECTION 14 Transport information** # Labels Required Limited quantity: 834B-375ML, 834B-2.7L # Land transport (ADR-RID) | 14.1. UN number | 2735 | | | |-------------------------------|---|-------|--| | 14.2. UN proper shipping name | AMINES, LIQUID, CORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S. (contains triethylenetetramine and tall oil/triethylenetetramine polyamides) | | | | 14.3. Transport hazard | Class 8 | | | | class(es) | Subrisk Not Applicable | | | | 14.4. Packing group | II | | | | 14.5. Environmental hazard | Environmentally hazardous | | | | | Hazard identification (Kemler) | 80 | | | | Classification code | C7 | | | 14.6. Special precautions for | Hazard Label | 8 | | | user | Special provisions | 274 | | | | Limited quantity | 1 L | | | | Tunnel Restriction Code | 2 (E) | | # Air transport (ICAO-IATA / DGR) | 14.1. UN number | 2735 | | | | |------------------------------------|--|---------------------------------------|---------|--| | 14.2. UN proper shipping name | Polyamines, liquid, corrosive, n.o.s. * (contains triethylenetetramine and tall oil/ triethylenetetramine polyamides); Amines, liquid, corrosive, n.o.s. * (contains triethylenetetramine and tall oil/ triethylenetetramine polyamides) | | | | | | ICAO/IATA Class | 8 | | | | 14.3. Transport hazard class(es) | ICAO / IATA Subrisk | Not Applicable | | | | 0.000(00) | ERG Code | 8L | | | | 14.4. Packing group | Ш | | | | | 14.5. Environmental hazard | Environmentally hazardous | | | | | | Special provisions | | A3 A803 | | | | Cargo Only Packing Instructions | | 855 | | | | Cargo Only Maximum Qty / Pack | | 30 L | | | 14.6. Special precautions for user | Passenger and Cargo Packing Instructions | | 851 | | | user | Passenger and Cargo Maximum Qty / Pack | | 1 L | | | | Passenger and Cargo | Limited Quantity Packing Instructions | Y840 | | | | Passenger and Cargo | Limited Maximum Qty / Pack | 0.5 L | | # Sea transport (IMDG-Code / GGVSee) | 14.1. UN number | 2735 | | |------------------------------------|---|--| | 14.2. UN proper shipping name | AMINES, LIQUID, CORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S. (contains triethylenetetramine and tall oil/triethylenetetramine polyamides) | | | 14.3. Transport hazard | IMDG Class 8 | | | class(es) | IMDG Subrisk Not Applicable | | | 14.4. Packing group | П | | | 14.5. Environmental hazard | Marine Pollutant | | | | EMS Number F-A , S-B | | | 14.6. Special precautions for user | Special provisions 274 | | | | Limited Quantities 1 L | | | | | | # Inland waterways transport (ADN) | 14.1. UN number | 2735 | | |----------------------------------|--|--| | 14.2. UN proper shipping name | AMINES, LIQUID, CORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S. (contains triethylenetetramine and tall oil/ triethylenetetramine polyamides) | | | 14.3. Transport hazard class(es) | 8 Not Applicable | | | 14.4. Packing group | | | | 14.5. Environmental hazard | Environmentally hazard | ous | |------------------------------------|------------------------|--------| | | Classification code | C7 | | | Special provisions | 274 | | 14.6. Special precautions for user | Limited quantity | 1 L | | | Equipment required | PP, EP | | | Fire cones number | 0 | #### 14.7. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### 14.8. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |---|---------------| | tall oil/ triethylenetetramine polyamides | Not Available | | ammonium polyphosphate | Not Available | | aluminium hydroxide | Not Available | | aluminium oxide | Not Available | | triethylenetetramine | Not Available | | zinc borate | Not Available | | carbon black | Not Available | #### 14.9. Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |---|---------------| | tall oil/ triethylenetetramine polyamides | Not Available | | ammonium polyphosphate | Not Available | | aluminium hydroxide | Not Available | | aluminium oxide | Not Available | | triethylenetetramine | Not Available | | zinc borate | Not Available | | carbon black | Not Available | # **SECTION 15 Regulatory information** #### 15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture | ĺ | tall oil/ triethylenetetramine polyamides is found on the following regulatory lists | |---|--| | | Europe EC Inventory | # ammonium polyphosphate is found on the following regulatory lists Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) # aluminium hydroxide is found on the following regulatory lists Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) ## aluminium oxide is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) # triethylenetetramine is found on the following regulatory lists Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI #### zinc borate is found on the following regulatory lists Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) # carbon black is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List of Substances Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs. #### 15.2. Chemical safety assessment No Chemical Safety Assessment has been carried out for
this substance/mixture by the supplier. #### **National Inventory Status** | National Inventory | Status | |--|---| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (tall oil/ triethylenetetramine polyamides; ammonium polyphosphate; aluminium hydroxide; aluminium oxide; triethylenetetramine; carbon black) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | No (tall oil/ triethylenetetramine polyamides; ammonium polyphosphate) | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | No (ammonium polyphosphate) | | Vietnam - NCI | Yes | | Russia - FBEPH | No (tall oil/ triethylenetetramine polyamides) | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 Other information** | Revision Date | 21/07/2021 | |---------------|------------| | Initial Date | 14/10/2017 | # Full text Risk and Hazard codes | H312 | Harmful in contact with skin. | |------|---| | H319 | Causes serious eye irritation. | | H351 | Suspected of causing cancer. | | H360 | May damage fertility or the unborn child. | | H410 | Very toxic to aquatic life with long lasting effects. | | H412 | Harmful to aquatic life with long lasting effects. | | H413 | May cause long lasting harmful effects to aquatic life. | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards: EN 166 Personal eye-protection EN 340 Protective clothing EN 374 Protective gloves against chemicals and micro-organisms EN 13832 Footwear protecting against chemicals EN 133 Respiratory protective devices # Definitions and abbreviations PC—TWA: Permissible Concentration-Time Weighted Average ${\sf PC-STEL} : {\sf Permissible Concentration-Short Term \ Exposure \ Limit}$ IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances ## Reason for Change A-2.00 - New SDS format